Warping the Defence Timeline: Non-disruptive
Proactive Attack Mitigation for Kubernetes Clusters

Sima Bagheri*, Hugo Kermabon-Bobinnec*, Suryadipta Majumdar®,
Yosr Jarraya®, Lingyu Wang*, Makan Pourzandi®
*Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
Emails: {sima.bagheri, hugo.kermabonbobinnec, suryadipta.majumdar} @concordia.ca, wang@ciise.concordia.ca
§Ericsson Security Research, Ericsson, Canada. Emails: {yosr.jarraya, makan.pourzandi} @ericsson.com

Abstract—In spite of being the de-facto standard of container
orchestrators, Kubernetes reportedly suffers from security vul-
nerabilities and misconfigurations which may lead to severe
security threats to the containerized environments it manages.
Mitigating such threats based on alerts raised by existing
security monitoring solutions (e.g., Falco) can be challenging.
First, taking actions upon every alert can cause unacceptable
service disruption, as many such alerts may turn out to be
false positives. Second, validating each alert by administrators
before taking actions may render the mitigation too late to
prevent irreversible damages, e.g., denial of service. In this paper,
we propose a non-disruptive proactive mitigation approach to
address those limitations. Our main idea is to proactively trigger
mitigation ahead of an attack to prevent irreversible damages,
while designing the mitigation actions to be non-disruptive to
avoid any service disruption caused by false alerts. We implement
and integrate our approach with Kubernetes, and show its
effectiveness and efficiency.

Index Terms—Attack mitigation, container, Kubernetes

I. INTRODUCTION

Due to its inherent agility and flexibility, containerization
has emerged as a popular choice for many large-scale appli-
cations, such as 5G networks. Such containerized applications
are typically deployed and managed through container orches-
trators, such as the de-facto standard choice, Kubernetes [1].
Even though orchestrators play a vital role for the applications,
existing orchestrators reportedly suffer from various vulnera-
bilities and misconfigurations whose exploitation may allow
attackers to cause severe service disruption (e.g., Kubernetes
privilege escalation shown at Black Hat USA 2022 [2]).
Therefore, attack mitigation is critical for ensuring the service
continuity of containerized applications.

To that end, most existing security solutions for Kubernetes
fall short. First, the well-known high false positive rate of
existing security monitoring tools (e.g., Falco [3]) means that
an aggressive approach of taking mitigation actions upon
seeing every alert is impractical, as any false alarm may lead to
unacceptable service disruption. Instead, most administrators
would validate the alerts before taking mitigation actions,
which can be tedious and cause significant delay to the
mitigation. Second, there exist “proactive” attack mitigation
solutions (e.g., [4]-[6]) which reduce such a delay by perform-
ing costly security verification in advance based on prediction.
Nonetheless, as their mitigation steps are still triggered after
the attacks occur, it may still be too late to prevent irreversible

damages such as denial of service or information leakage.
Those limitations will be further illustrated to motivate towards
our solution through an example in Section II-B.

In this paper, we propose a novel approach to proac-
tively trigger mitigation actions before attacks actually occur,
namely, WARP (i.e., warping the defence timeline between
attack and its mitigation). To avoid any service disruption
caused by false alarms, our idea is to rely on non-disruptive
mitigation actions (e.g., live migration of containers) with
negligible delay. Specifically, WARP first builds a predictive
model of attacks based on Falco alerts in Kubernetes, as well
as MITRE ATT&CK framework [7] for attacker’s tactics and
strategies. Second, using the predictive model, WARP predicts
the attacker’s next steps at runtime, identifies the resources
that might be involved, and evaluates the risks of potential
damages. Finally, it migrates the resources according to an
optimal strategy for mitigating the overall damages to the clus-
ter. WARP is implemented for Kubernetes and evaluated using
real-world APT attacks simulated in a controlled environment.

In summary, our main contributions are as follows:

o As per our knowledge, this is the first proactive attack
mitigation approach that can also avoid the service dis-
ruption caused by potential false alarms.

« We instantiate this approach based on Kubernetes through
developing techniques for predictive model construction,
attack prediction, risk evaluation, and optimal migration.

« We build the first large-scale Kubernetes attack dataset
with 231k Falco alerts based on real-world APT attacks
simulated in a controlled environment. Our experiments
using the dataset show WARP’s efficacy (e.g., mitigating
81% of the alerts with a cumulative delay of 30 seconds
per hour for the entire cluster during attack).

The rest of this paper is organized as follows: Section II
provides preliminaries. Section III, IV and V detail our
approach, implementation and experiments, respectively. Sec-
tion VI reviews literature and Section VII draws conclusion.

II. PRELIMINARIES

A. Background

Kubernetes is widely regarded as one of the most popular
container orchestrators [8]. Left side of Figure 1 shows a
simplified view of a Kubernetes cluster. Such a cluster contains

Alert #1: Error
| SMEF, file below a
known binary

@ T6: Exploit CVE-2021-3156

Alert #8: Notice
. | AME, shell spawned |

Alert #10: Error
UDM, file below root

. on | +* ; . :
@ T8: Escaping attack to Worker Node 1 1 opened for writing @ ina container @ opened for writing
® TI10: UDM Information leakage | | | | | | | | \ | |
Timeline t : ; : ; t : + ; t
= - < T1 2 3 T4 s T6 7 TS 9 T10
5G Core Kubernetes Cluster (2) .
o . :| Mitigation: blocking ©
v WorkerNode 1 __.x .| UDM binary directory
UDM AUSF SMF AMF - .| based on non-attack aler
Security admin 1. === — =
-| Limitation: unnecessary g Limitation: not preventing
-| disruption of UDM in irreversible damage (i.e.,
*| case of false positive ;<] information leakage)

. ‘ Analyzing all the alerts to understand the scenario

~Mitigation: implement
network policy >

a

oo BV
Security admin 2-

©

Alert risk prediction

Our solution: [Proactive attack -
... WARP modeling .

Benefits:

-less service disruption
N‘_)f_l'dl:“lll’['w -preventing irreversible damage
mitigation

Fig. 1: Motivating example.

multiple worker nodes and a master node, where each node has
several Pods as deployment unit to host various services, such
as network functions in a 5G network (UDM, AUSEF, etc.).
Such a cluster might also be configured with Falco, which is
a Kubernetes runtime security solution that monitors syscalls
and raises alerts about occurring events in a cluster.

B. Motivating Example

As a motivating example, Fig. 1 illustrates an attack scenario
on a Kubernetes cluster hosting a 5G core due to a real-world
vulnerability (CVE-2021-3156 [9]) in Kubernetes. As shown
on the left, the attacker performs three major steps: (1) at
time T6, exploiting CVE-2021-3156 to infect a Pod (AMF)
in Worker node 1, (2) at T8, escaping to the node level
at Worker node 1, and (3) at T10, leaking information at
another Pod (UDM) in the same node. During the progress of
this attack, Falco (mentioned above) raises three alerts: Alert
#6 at T6, Alert #8 at T8, and Alert #10 at T10. To
mitigate this attack based on those alerts, the right side of the
figure shows two potential approaches:

« Fast (but disruptive) mitigation: As shown in the figure,
suppose Security admin 1 adopts a fast mitigation
approach by immediately blocking the access to the bi-
nary directory of the adjacent Pod (AUSF) upon observing
Alert #1 at T1 (which indicates a writing in SMF
binary directory) with the hope of limiting the attack
damage. However, suppose the admin later finds out that
Alert #1 is actually a non-attack alert (caused by a
false positive). Consequently, this approach has caused
an unnecessary disruption to the AUSF service.

« Non-disruptive (but slow) mitigation: As shown in the
figure, suppose Security admin 2 adopts a non-
disruptive mitigation approach by analyzing each alert
(till Alert #10) to fully understand the scenario before
implementing a new network policy for mitigation. How-
ever, as the mitigation happens after the attacker moves
to the worker node, this approach fails to prevent the in-
formation leakage at UDM, whose damage is irreversible.

Our Solution. As shown on the bottom of the figure, WARP
overcomes both limitations by proactively building an attack
prediction model (before T1), continuously predicting the

risks as alerts are received (e.g., at T6, predicting the risk
for all Pods in Worker node 1 from Alert #6), and at
T6, applying non-disruptive mitigation (i.e., live migration of
Pod) for UDM. Consequently, WARP can limit the damage of
information leakage at UDM without causing any unnecessary
service disruption (despite the presence of false alarms).

C. Threat Model

The in-scope threats include attacks that are launched by
either external attackers or insiders through exploiting miscon-
figurations or vulnerabilities in a containerized environment
such as Kubernetes, and we assume the initial step(s) of
those attacks can be detected by an existing detection or
monitoring tool such as Falco (the detection itself is out of
the scope of this paper). The out-of-scope threats include any
attacks which may be effectively prevented through security
patches, firewalls, intrusion prevention systems, etc. (as WARP
is designed to mitigate the damages caused by “inevitable”
attacks such as APTs), zero day attacks which can completely
evade existing detection tools (as WARP is triggered by their
alerts), or attacks targeting lower-level infrastructures than
containerized applications and services (as WARP focuses on
Kubernetes). Finally, we assume the integrity of WARP, Falco,
and Kubernetes is protected with existing trusted computing
techniques (e.g., remote attestation [10]) and any integrity
breach is beyond our scope.

III. WARP APPROACH
A. Overview

Fig. 2 shows an overview of WARP with two major phases:
(1) Offline Proactive Attack Modeling, and (ii) Runtime Detec-
tion and Mitigation. The inputs to WARP are the Falco alerts
collected from Kubernetes environment. During the offline
phase, WARP extracts the MITRE ATT&CK tactics property
from Falco alerts and builds a predictive model with prob-
abilistic dependency relationships among MITRE ATT&CK
tactics. During the runtime phase, when Alert Interception
detects a Falco alert, WARP leverages the predictive model
to predict the attacker’s next move, calculates a risk value for
all the resources, and optimally selects Pods to be migrated to
another node. In the following, we elaborate on both phases.

(Offline — Wy N

p i Predictive Model Building Predictive Model
roactive |[r------------| |m-—--————-—-a
Attack | Falco Log Collection | : Predictive :
Modeling | andProcessing | | Model Learning |
ing |- ___ 2= _ v ZZT TR
Eovironmen| | Runtime 5] [7 Proactive Attack Prediction _
(e.g Detection & 3 : Future Attack | Resource Risk '
2. R |]
Kubernetes) | | Mitigation gl |- _Prediction 1" Caleulation _JI
o
y 3 Non -disruptive Attack Mltlgatlon
falco K I e B By s
= , Optuml Resource Selection ,—b, Pod Migration :
Sl 1 [|
\ Y

Fig. 2: Overview of WARP approach.

B. Offline Proactive Attack Modeling

Predictive Model Building. First, each Falco alert contains
several properties with more detailed information about abnor-
mal behavior. One of these properties is a MITRE ATT&CK
tactic that indicates the MITRE ATT&CK tactic related to the
alert (e.g., Privilege Escalation - MITRE ATT&CK TA0004).
Therefore, the first sub-component is Falco Log Collection
and Processing, which parses the alert log entries collected
and aggregated by Falco from different Pods in order to
extract the mitre_<tactic_name> tag. Then, the training
dataset including the extracted tactics is sent to the second sub-
component, i.e., Predictive Model Learning, which generates
the predictive model. The predictive model represents the
potential sequential transitions from one tactic to another as
well as the relative probabilities of such transitions, based
on historical data. This model is represented as a Bayesian
network where nodes indicate MITRE ATT&CK tactics, edges
indicate their transitions and are labeled with probabilities of
transitions. To build the Bayesian network model, we use the
pgmpy Python library [11].

Example 3.1: As an example, Fig. 3a shows three log
entries collected by Falco for our attack scenario, with the
MITRE ATT&CK tactic highlighted. First, Alert #1 relates
to a potential Privilege Escalation tactic employed by an
attacker, followed by Execution then lastly Persistence. Such
Falco log entries serve as the inputs for learning a Bayesian
network model about the relationship between tactics and
their probabilities. Fig. 3b shows an example of this model
covering our attack scenario (highlighted in red) starting from
Privilege Escalation, leading to Execution then Persistence,
with a probability of 31% and 25%, respectively.

C. Runtime Attack Detection and Mitigation

Proactive Attack Prediction. This component first performs
Future Attack Prediction using the predictive model and then
performs Resource Risk Calculation by examining the Falco
alert properties, as shown in Fig. 3c. As an example, we assign
each parameter a value on scale from 1 to 5 according to the
definition given below. Then we apply a risk formula (inspired
by [12]) to estimate the risk associated with each Pod.
« Priority Severity [1 — 5]: Priority parameter inside each
Falco alert (i.e., Critical, Error, Warning, Notice, Debug).
« MITRE ATT&CK Tactic Severity [1 — 5]: Average
priority severity of all alerts for one tactic.

Alert 1: 20:22:29.029612586: Critical Detect Sudo Privilege Escalation Exploit (CVE-2021-3156) (user=xxxx
parent=sudo cmdline=sudoedit -s YYYYYY\ K8s.ns=namespace_CU K8s.pod=pod_one container=1067a9afb4bc)
K8s.ns=namespace_CU K8s.pod=pod_one container=1067a9afb4bc tags: [filesystem, (mitre_privilege_escalation))

Alert 2: 20:22:34.58427111: Notice a shell was spawned in a container with attached terminal (user=xxxx
user_loginuid=-1 K8s.ns=namespace_CU K8s.pod=pod_one container=1067a9afb4bc shell=bash cmdline=bash
terminal=34816 container_id=1067a9afbab u) K8s.1 e_CU K8s.pod=pod_one
container=1067a9afb4bc tags: [container, shell(mitre_execution m

Alert 3: 20:22:47.98521473: Error file be\ow/or /root opened for writing (user=xxxx user_loginuid=-1 file=/cmd
program=bash container_id=106 b g 1tu) K8s.ns=r e_CU K8s.pod=pod_one
istence

container=1067a9afb4bc tags: [fil m,(mitre_|

(a) Falco log alerts example

Lateral
Movement

Discovery

Initial
Access

Credential
Access

Risk = Priority. Severity x MITRE_Tactic_Severity x Context Severity x
max(Next_Tactic_Probability x 2 max(MITRE_Next_Tactic_Severity)) x Asset_Value

(c) Risk calculation example

Fig. 3: WARP’s initial offline and runtime steps.

« Context Severity [1 — 5]: Assigned to parameters iden-
tified as malicious (e.g., user, command).

« Next Tactic Probability [0 — 1]: Probability of the next
tactic according to the predictive model.

o Asset Value [1 — 5]: Assigned to each Pod based on the
relative importance of hosted services and information.

Example 3.2: Considering the aforementioned attack sce-
nario (Fig. 3), the first Falco alert received at runtime is a
Privilege Escalation caused by CVE exploitation. Based on the
model (Fig. 3b), the most likely next attack step is Execution as
its edge shows the maximum probability. Therefore, as shown
in Fig. 3c, the next attack step with its probability is identified,
and the risk for the associated Pod is calculated.

Next, if the calculated risk exceeds a predefined threshold,
which is a percentage of the maximum risk specified by the
security admin based on the desired level of threat awareness,
then the next component, Non-disruptive Attack Mitigation,
will be triggered to perform Pod migration. Meanwhile, the
risk calculation process will continue for the next alert.

Non-disruptive Attack Mitigation. The first step for perform-
ing non-disruptive mitigation is to find the optimal destination
node for migration. The Optimal Resource Selection sub-
component applies linear programming to find the optimal
destination node. An optimal selected node follows three

Attack Attack Campaign CVE Attack Features® MITRE ATT&CK Tactic Sequence

D Number PL PA INJ IG BD

1 APT 3 [13] 2015-3113 * * * * * Execution, Defense Evasion, Discovery, Defense Evasion, Lateral Movement

2 Spam campaign [14] 2017-11882 * * * * Discovery, Persistence, Execution, Defense Evasion, Defense Evasion, Lateral Movement, Exfiltration

Persistence, Execution, Defense Evasion, Privilege Escalation, Defense Evasion, Discovery, Lateral

3 APT 29 [15] 2021-36934 * * * * * Movement, Initial Access, Persistence, Privilege Escalation, Defense Evasion

4 Escape attack [16] 2021-3156 * Privilege Escalation, Execution, Persistence

5 Slmul;ilt)ergazr)[q;;?mlner 2017-10271 * * * * Discovery, Execution, Persistence, Defense Evasion, Lateral Movement

6 Root data the'tl via 2020-14386 * * * Discovery, Persistence, Privilege Escalation, Exfiltration, Persistence, Lateral Movement

memory corruption [18]

7 SWC [19] 2015-5122 * * * * Discovery, Execution, Defense Evasion, Persistence
Targeted .gov . . .

8 R 2015-5119 * * * * Discovery, Persistence, Lateral Movement, Exfiltration
phishing [20]

TABLE I: Overview of simulated APT attacks and exploits for WARP dataset.
“PL: Phishing email link. PA: Phishing email attachment. INJ: Injection. IG: Information gathering. BD: Backdoor.

objectives as demonstrated in the following. First, it minimizes
the migration of resources with higher asset values. This is
to reduce the negative impact of any migration delay on
more important resources. Moreover, it regroups the Pods
during migration by the service they serve to avoid introducing
additional communication overhead. Finally, it isolates the
Pods under attack (i.e., minimize its co-located Pods and
their combined asset value). At last, the Pod Migration sub-

component migrates the selected Pods to the optimal node.
777 Service A (77 Service B @ Attacked service — Service connectivity

:Migration
: N

Nodelg i Node 2 N
S| [Se
[?J

Pod 4)

Pod2) (_ Pod3

Node 3

@

Pod |
Asset value 1: #A + #B Asset value 2: #A + #B Asset value 3: #A + #B

_Pod5 Pod6

Fig. 4: An example of WARP optimal mitigation.

Example 3.3: Fig. 4 shows an example for finding the
optimal destination node for migration. There are two different
services running in different Pods in three nodes. We assume
the asset value is calculated based on the services inside each
Pod and service A has a higher asset value. As shown, the
attacked Pod is co-located with Pod 2. Our goal is to minimize
any chance for the attacker to perform lateral movement and
move to other Pods. Therefore, either the attacked Pod or the
co-located Pod should be migrated. Since Pod 2 has a lower
asset value, the optimal migration is to isolate the attacked
Pod in Node 1 and migrate Pod 2 to a less risky node. Node
risk is associated with the asset value of its inside services. In
this particular example, Node 2 is hosting fewer services and
data, turning it into the less risky destination.

IV. FALCO ALERT DATASET BUILDING

We build a relatively large Falco alert dataset for Kubernetes
with both normal and APT attacks data to facilitate the
learning of our predictive model (discussed in Section III-B)
and to support future research. Our dataset is available on
GitHub [21]. For the attack alerts, we apply CALDERA [22],
an adversary emulation platform, developed by MITRE to
mimic the attacks in a Kubernetes cluster in the form of
MITRE ATT&CK tactic sequences (as summarized in Table I).
For the normal alerts, we take advantage of the fact that Falco
generates normal daily routine alerts even in the absence of
any attack. We then label these alerts as “attack” or “normal”,

respectively. Our dataset contains 231K alerts (including 2,314
attack alerts and 228,686 normal alerts).

Challenges. During building this dataset, we encounter several
challenges as follows. As Falco reports alerts together for
all resources in a cluster, we need to aggregate those alerts
to reconstruct the attack steps. For this purpose, we first
automatically group the alerts by resources (i.e., container ID)
and then extract MITRE ATT&CK tactics’ property from the
sequence of alerts. Additionally, the dataset is unbalanced with
the number of normal alerts significantly higher than the attack
alerts, as Falco generates a considerable number of similar
alerts for system events. To obtain a realistic balanced dataset,
we undersample the normal and oversample the attack alerts.

V. EXPERIMENTS
A. Implementation and Experimental Setup

WARP is implemented in Python and integrated with Ku-
bernetes v1.20.2. For collecting runtime security alerts, we
deploy Falco in a Kubernetes cluster using the official Helm
deployment. Our Kubernetes cluster is hosted over 11 VMs
running Lubuntu 20.04. One VM as master node (eight vCPUs
and 32GB RAM), and ten other VMs as worker nodes (each
four vCPUs and 8GB RAM). We apply VirtualBox6.1 as the
hypervisor, and CRIU v0.27.0 [23] for Pod migration. The
physical hardware of our cloud is composed of one physical
rack-mount server with 2x Intel(R) Xeon(R) Gold 5120 CPU
@ 2.20GHz and 128GB of DDR4-2933 running Debian 10.

B. Experimental Results

Attack Progress. The first set of experiments (as shown
in Fig. 5) evaluates the effectiveness of WARP for mitigating
three APT attacks (i.e., SWC, APT 3, and APT 29) under
different threshold risk values as those attacks progress (re-
flected by the number of received Falco alerts). The risk values
are calculated using the method described in Section III-C
upon receiving each Falco alert. For instance, APT 29 is
completed with 10 alerts received, and the associated risk
value stays in the range of very low during the first three
alerts and reaches to high after Alert 7. As the figure shows,
for different thresholds (30%, 50%, and 70%), indicated by
horizontal dashed line, WARP will mitigate the attacks at
different risk levels. A threshold of 30% (Fig. 5a) can mitigate
all the attacks and prevent potential damages to the cluster. A
higher threshold of 50% (shown in Fig. 5b) will mitigate APT

7500 | ##ASWC XEAPT3 BN APT29 High 7500 | Z#ASWC SCAPT3 BN APT29 High 7500 {2 SWC SAZAPT3 BN APT29 High
Threshold = 70%
Medium Medium] Medium
5 000 % 2000 T adhold 50% % 3000 -
~ - Low Low R~ . X Low
25001 Threshold = 30% 2500 2500 g |
Very Low Very Low = ol X Very Low
X
0- 04 0
0 1 2 3 0 1 2 3 4 5 6 7

Attack Alert

(a) Threshold=30%

Attack Alert

(b) Threshold=50%

Attack Alert

(c) Threshold=70%

Fig. 5: Attack progress.

29, while allowing APT 3 and SWC to successfully complete
without being mitigated. Finally, a threshold of 70% (shown
in Fig. 5¢) will only mitigate APT 29 at the high risk level, and
the other attacks will complete successfully. The implication of
those results is that a security admin could generally choose a
lower threshold to mitigate attacks more effectively (although
it also implies a slightly higher migration delay, as shown in
the following experiments).

Mitigation Delay. The second set of experiments is to mea-
sure the mitigation delay caused by WARP under different
migration techniques and different service (container) sizes.
We consider two popular techniques for container migration:

o Docker: Where the migration is performed by first stop-

ping the pod and then copying it to the new location.
o CRIU [23]: A checkpoint is set on a Pod and restored
in a new Pod in a new node from that checkpoint.

Fig. 6a shows the migration delay for both techniques for
different container sizes (in MB). CRIU has an overall constant
migration time of 0.94s for different sizes of containers, while
Docker has exponentially growing delay (up to 32s for the
largest container). Note that, except for the tightly coupled
containers which are meant to be inside the same Pod, the
Kubernetes best practice of running only one application or
container per Pod will result in 0.87s migration delay on
average by WARP. Fig. 6b depicts the impact on migration
delay for ten different container services with different sizes
(from 22 MB to 316 MB), with the Average Migration Delay
ranging from 0.4s to 3.1s for different thresholds (30%,
50%, and 70%). Additionally, Fig. 6c measures the Migration
Frequency (i.e., the expected number of delays per hour) for
those ten different container services (i.e., Services 1-10) for
different thresholds. Higher threshold values generally imply
less frequent migration and hence less delay (e.g., Services 1,
2, and 3). Finally, Fig. 6d experiments on both Migration Fre-
quency and Average Migration Delay for different threshold
values; which shows both the migration frequency and delay
decreases as threshold increases. The implication of those
results is that, although there is a tradeoff between mitiga-
tion effectiveness (mentioned above) and migration delay, the
impact on services is generally negligible and non-disruptive
as migration preserves the network connection state.

Mitigation Accuracy. The third set of experiments is to
measure the accuracy of WARP in terms of mitigating attack-
related alerts (i.e., true positives), non-attack alerts (false
positives), and missed attack alerts (false negatives). Table II

Attack ID Total per Total
Threshold 1 2 3 4 5 6 | attack(%) | Dataset (%)

30% | Mitigated | 60 | 9T | 68 [91 [95 | 89 81 81
50% Attack [0 [85 |40 | 77 [84 | 1 ol 61.95
70% Alert(%) [0 [68 [30 | 44 [67| 65 756 254
30% False |32 39 [39 [42 [77 [38 39 351
0% | positivess) S| 3 | 2 [34 [35 [33 pE; 26
70% 8§ (24 [1823 [31|28 3 1829

TABLE II: WARP effectiveness per attack and dataset.

—e— Docker ~ | —+—Threshold = 30%
301 —=—Criu _3.09 ——Threshold = 50%
25 i 25 Threshold = 70%
220
a

- 03 ,/"”4""—4 e ae—
N Bhved B

25 50 75 100 125 150
Container Size (MB)

Delay (s)
—_
S

[
ge
n

22 56 88 115 147 170 202 236 260 316
Service Size (MB)

(a) Container migration delay (b) Migration delay per service

15.0

WM Threshold = 30%
XX Threshold = 50%

2 Threshold = 70%
—=— Migration Frequency |4

125

== 3
n
(/hour)

Migration Frequenc;

—e— Average Delay

y

" 10.0

w

7.5

N

Average Delay (s)

5.0

Migration Frequency (/hour)

o
S &
o

1 2 3 4 5 6 7 8 9 10 T10 20 30 40 50 60 70 80
Service Threshold (%)

(c) Delay frequency per hour (d) Migration delay/frequency

Fig. 6: Migration delay and frequency for ten different sized
services and various thresholds.

shows the numerical results for six of the simulated attacks,
respectively, and for the whole dataset. As mitigated attack
alert rate and missed attack alert rate are complementary (i.e.,
adding to 100%), we mention only mitigated attack alert rate
in the Table II. Fig. 7 depicts that, for three selected thresholds
(30%, 50%, and 70%), lower threshold values result in higher
mitigated attack alert rates, lower missed attack alert rates,
and higher false positive rates for different-sized services.
The implication of those results is that a lower threshold is
generally preferable thanks to the non-disruptive nature of
migration (i.e., false positives are of less concern as they only
mean slightly more delay).

VI. RELATED WORK

Existing mitigation approaches (e.g., [4]-[6]) for container
and cloud environments perform computationally expensive
steps in advance and keep the final mitigation step for the
attack to occur. However, as these approaches only start
the mitigation upon critical events, they may still be too

100 | mmmm Missed Attack Alert # Mitigated Attack Alert 100 1 mmmm Missed Attack Alert 558 Mitigated Attack Alert 100 1 mmmm Missed Attack Alert ##%8 Mitigated Attack Alert
@ 7/ 7 False Positive \’? 7/ 7 False Positive ’\S‘ 7/ 7 False Positive
£ g0 e Posi S 804 < 809
i) () 5 - - (9]
5 601 2ol s op bR Eorog 8w 20
35 40 S 40 A |] i B | | | | & |] S 40 [-] } B | | § 0 . [
5 5 b ZE SR 2 FE FE FR 2R PR 2R b Bl P EE PR EE FE R PR B
a 204 & 200 b U F LV EE Skl LV

o

ervice Size (MB)

(a) Threshold = 30%

22 56 88 115 147 170 202 236 260 316
Service Size (MB)

(b) Threshold = 50%

22 56 88 115 147 170 202 236 260 316
Service Size (MB)

(c) Threshold = 70%

Fig. 7: Threshold effectiveness.

late to prevent irreversible damages caused by the attacks,
while our solution launches mitigation earlier to minimize
such damages. There exist many attack detection and analysis
approaches for containers, such as anomaly-based (e.g., Uni-
corn [24]), provenance-graph-based (e.g., ProvDetector [25]),
and machine learning-based methods (e.g., [26]-[28]). Several
works counter specific classes of attacks for containers, e.g.,
proactively preventing lateral movements by enabling least
privilege policies [28]-[31] and applying graph optimization
to audit logs [32]. Finally, there exist other approaches for
containers (e.g., [12], [33]-[36]) which are either heuristic
or rule-based, thus requiring an effort for maintaining and
updating the heuristics or rules. Nonetheless, most existing
works do not directly provide a general mitigation solution,
and are thus complementary to our work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a proactive non-disruptive attack
mitigation approach for Kubernetes clusters. We derived a
predictive model from MITRE ATT&CK tactics, and utilized it
to proactively migrate the risky resources to the optimal nodes.
We also built a Falco alert dataset for Kubernetes attacks,
implemented, and evaluated our solution for Kubernetes. In
our future work, we intend to explore other mitigation methods
to complement migration for better coverage.

Acknowledgment. We thank the anonymous reviewers for
their valuable comments. This work was supported by the
Natural Sciences and Engineering Research Council of Canada
and Ericsson Canada under the Industrial Research Chair in
SDN/NFV Security and the Canada Foundation for Innovation
under JELF Project 38599.

REFERENCES

[1] Kubernetes. https://kubernetes.io/. [Accessed 30-3-2022].

[2] Y. Avrahami and S. Ben Hai. Kubernetes privilege escalation: Container
escape == cluster admin? In Black Hat USA, 2022.

[3] Falco. https://falco.org/. [Accessed 30-3-2022].

[4] S. Majumdar et al. LeaPS: Learning-based proactive security auditing
for clouds. In ESORICS. Springer, 2017.

[5]1 S.Majumdar et al. Learning probabilistic dependencies among events for
proactive security auditing in clouds. In Journal of Computer Security,
2019.

[6] H. Kermabon-Bobinnec et al. Prospec: Proactive security policy en-
forcement for containers. In ACM CODASPY, 2022.

[71 MITRE Att&CK. https://attack.mitre.org/. [Accessed 30-3-2022].

[8] CNCF 2020 Survey Report. www.cncf.io/wp-content/uploads/2020/11/
CNCF_Survey_Report_2020.pdf, 2020. [Accessed 10-10-2022].

[9] CVE-2021-3156. https://nvd.nist.gov/vuln/detail/CVE-2021-3156/. [Ac-
cessed 30-3-2022].

[10] M. Li et al. MyCloud: supporting user-configured privacy protection in
cloud computing. In ACSAC, 2013.

A. Ankan et al. pgmpy: Probabilistic graphical models using python. In
SCIPY. Citeseer, 2015.

WU. Hassan et al. Tactical provenance analysis for endpoint detection
and response systems. In /EEE SP, 2020.

APT 3. https://attack.mitre.org/groups/G0022/. [Accessed 30-3-2022].
Cedrick Ramos. Spam campaigns with malware exploiting cve-
2017-11882 spread in australia and japan. https://www.trendmicro.
com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns- with-
malware-exploiting-cve201711882-spread-in-australia-and-japan/,
2017. [Accessed 30-3-2022].

APT 29. https://attack.mitre.org/groups/G0016/. [Accessed 30-3-2022].
Escape attack. Exploiting CVE-2021-3156. https://www.helpnetsecurity.
com/2021/01/27/cve-2021-3156/. [Accessed 30-3-2022].

Crypto miner delivery. Exploiting CVE-2017-10271.
https://www.mandiant.com/resources/cve-2017-10271-used-deliver-
cryptominers-overview-techniques-used-post-exploitation-and/.
[Accessed 30-3-2022].

Root data theft. Kernel vulnerability exploiting cve-2020-14386. https:
//mvd.nist.gov/vuln/detail/CVE-2020-14386/. [Accessed 30-3-2022].
Strategic web compromise. https://www.fireeye.com/blog/threat-
research/2015/07/second_adobe_flashz0.html/. [Accessed 30-3-2022].
Pierluigi Paganini. Phishing campaigns target us government agencies
exploiting hacking team flaw cve-2015- 5119. https://securityaffairs.
co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html/, 2015.
[Accessed 30-3-2022].

Falco alert dataset with APT attacks. https://github.com/simabagheril/
Falco- Alerts- Dataset- with- APT-attacks.

CALDERA. https://caldera.mitre.org/. [Accessed 30-3-2022].

CRIU. https://criu.org. [Accessed 30-3-2022].

X. Han et al. Unicorn: Runtime provenance-based detector for advanced
persistent threats. In NDSS, 2020.

Q. Wang et al. You are what you do: Hunting stealthy malware via data
provenance analysis. In NDSS, 2020.

A. Alsaheel et al. ATLAS: A sequence-based learning approach for
attack investigation. In USENIX Security, 2021.

Y. Shen et al. ATTACK2VEC: Leveraging Temporal Word Embeddings
to Understand the Evolution of Cyberattacks. In USENIX Security, 2019.
F. Liu et al. Log2vec: A heterogeneous graph embedding based approach
for detecting cyber threats within enterprise. In ACM CCS, 2019.

B. Bowman et al. Detecting lateral movement in enterprise computer
networks with unsupervised graph Al In RAID, 2020.

Q. Liu et al. Latte: Large-scale lateral movement detection. In MILCOM.
IEEE, 2018.

S. Freitas et al. D?M: Dynamic defense and modeling of adversarial
movement in networks. In SDM, 2020.

Y. Kwon et al. MCI: Modeling-based causality inference in audit logging
for attack investigation. In NDSS, volume 2, page 4, 2018.

WU. Hassan et al. Omegalog: High-fidelity attack investigation via
transparent multi-layer log analysis. In NDSS, 2020.

MN. Hossain et al. Combating dependence explosion in forensic analysis
using alternative tag propagation semantics. In IEEE SP, 2020.

S. Milajerdi et al. Holmes: real-time APT detection through correlation
of suspicious information flows. In /IEEE SP, 2019.

R. Yang et al. UlScope: Accurate, instrumentation-free, and visible
attack investigation for GUI applications. In NDSS, 2020.

[11]
[12]

[13]
[14]

[15]
[16]

[17]

[18]
[19]

[20]

