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Abstract—Containerization using tools such as Docker has
transformed the way applications are deployed and managed
in various organizations. However, the use of containers also
presents new security challenges due to the potential vulnerabili-
ties that may be present in the container images. To address this,
various vulnerability detection tools that use static analysis have
been developed that focus more on OS packages, and fail to detect
known package vulnerabilities. In this paper, we propose a pre-
deployment methodology that detects vulnerabilities in container
images targeting both the OS and application packages using
a layered approach, where static tools generally fail to detect
vulnerabilities in those images. Our solution offers a high degree
of customizability and control over its performance in detecting
vulnerabilities in images. Users can choose a specific scan profile
that is tailored to their particular needs, enabling the detection
of vulnerabilities that are either more common, more unique,
or a balance of the two. This adaptability makes our solution
more flexible and better suited to meet the specific needs of our
users. We evaluate our proposed framework against 111 both
official and community images collected from Docker Hub to
demonstrate its effectiveness compared to other popular static
analysis tools for containers.

Index Terms—Container Security, Static Analysis, Layered
Analysis, Pre-deployment Methodology, Docker

I. INTRODUCTION

Containers have gained significant popularity as a viable al-
ternative to traditional virtualization methods since the advent
of Docker [1] in 2013. They provide numerous benefits such
as the ability to bundle an application with its dependencies
into a single unit, and efficient utilization of system resources
by sharing the host operating system kernel. This has led to
over 70% of organizations deploying containers in production,
often utilizing shared container orchestration platforms, such
as Kubernetes [2], Docker Swarm [3], Mesos [4], and Nomad
[5]. This widespread adoption has transformed the industry,
enabling organizations to easily deploy and manage their
applications with increased efficiency.

However, the adoption of containers also presents new secu-
rity challenges. Container images may contain from outdated
and/or vulnerable packages to misconfigured settings, and
since containers are run with root privileges, they may be
susceptible to attacks [6] [7]. Studies have shown that on
average, each Docker image contains at least one vulnerability,
with some images having up to 50 vulnerabilities. Wist et al.
reported in 2021 that 46% of the official images, and 68% of

the community images had at least one high rated vulnerability
[8]. Such vulnerable containers hosted on a shared cloud
platform have the potential to affect other containers or hosts.
For instance, in July 2017, it was reported that a hacker
uploaded several malicious Docker images on Docker Hub
[9]. These images were downloaded more than five million
times before they were removed, resulting in the mining of
545 Monero digital coins worth approximately $900,000 [10].
Similar cases have been reported in the past [11], highlighting
the importance of implementing a pre-upload vulnerability
scanning methodology that can detect such vulnerable con-
tainers early on and speedy enough for customer satisfaction.

To detect and address the security risks associated with
container images fast, various vulnerability detection tools
that use static analysis are could be used. Static analysis is a
method used to detect vulnerabilities by analyzing the image
without running it, therefore identifying potential security risks
really fast. Popular tools for static analysis of container images
include Grype [12], Snyk [13], Trivy [14], Clair [15] etc.
These tools list the packages installed in the container and
match them against a vulnerability database, allowing for the
identification of vulnerabilities in the packages and enabling
administrators to take the appropriate action to mitigate the
risks. However, while static analysis can be an effective
method for identifying vulnerabilities in container images, it
may fail to detect known vulnerabilities. This is primarily due
to two reasons: (i) the results of static analysis scans can be
influenced by the quality of the analysis tool and the accuracy
of its vulnerability database; and (ii) these tools mainly focus
on base OS packages, ignoring many application packages.

Most existing static analyzers for container security have
limited accuracy since they mainly focus on identifying vul-
nerabilities in OS packages, but not application packages. As
a result, even the best performing static analysis tool missed
≈34% of the vulnerabilities in their evaluation [16]. While
dynamic analysis is a more effective method for identifying
vulnerabilities in container images, it is slower than static
analysis [17]. Therefore, it is not ideal for scenarios where
a faster scan is required, such as prior to deploying images
to shared cloud platforms like Docker Hub or Kubernetes.
In such scenarios, long waiting for an image to be scanned
for vulnerabilities is not practical. To effectively tackle this
issue, we propose a novel solution that utilizes the power of



static analysis, targets both the OS and application packages,
and provides superior detection and coverage compared to
conventional static analysis tools for containers.

The primary contributions of this paper are as follows:
• Our tool is the first to perform lightweight pre-

deployment scanning of container images in a layered
fashion, while increasing vulnerability landscape cover-
age without the performance overhead associated with
alternative methods like dynamic analysis.

• Our approach achieves higher vulnerability detection
rates by combining different state-of-the-art tools spe-
cialized in detecting both base OS package and appli-
cation package vulnerabilities, without actually requiring
improvements to the vulnerability scanning techniques
themselves, surpassing stand-alone static analyzers fo-
cused solely on base OS packages.

• Our tool empowers users with customizability and control
of the tool’s scan behavior and performance by incorpo-
rating tunable performance parameters and scan profiles
e.g. light, adaptive and thorough scans, enabling them
to meet safety requirements tailored to their specific
scenarios.

• We implement our tool for Docker, the leading container-
ization platform, and evaluate it with 111 images (both
official and community) from Docker Hub, showcasing its
superior effectiveness compared to popular static analysis
tools with an average 112% increase in CVE detection,
surpassing tools like Grype, Snyk, Trivy.

The rest of the paper is structured as follows, Section II
presents related works, followed by required preliminaries
to understand our work in Section III. Section IV explains
our methodology used in this paper, Section V provides the
technical approach to our architecture. Section VI finally
provides the details of our experimental data, and Section VIII
concludes the paper.

II. RELATED WORKS

In this section, we explore prior research in the realm of
cloud container security and vulnerability detection, with a
particular focus on Docker containers and associated secu-
rity practices. We delve into existing studies that address
Docker container security, examine methodologies for iden-
tifying common vulnerabilities and exposures (CVEs) within
container images, and explore the landscape of cutting-edge
vulnerability detection tools.

In the DIVA (Docker Image Vulnerability Analysis) study
[18], a comprehensive analysis of over 356,000 community
and official images revealed significant vulnerability dispari-
ties. On average, community images exhibited 180 vulnerabil-
ities, while official images displayed 75 vulnerabilities. The
study emphasized the persistence of outdated images, which
prolonged vulnerability propagation. Vulnerability detection
was performed using Clair. Similarly, another investigation [8]
found that certified images were unexpectedly more vulnerable
than official images, with community images averaging 150
vulnerabilities and official images averaging 70 vulnerabilities.

The study identified the most vulnerable CVEs and generated
a vulnerability frequency based on CVSS scores. Interestingly,
no correlation was observed between image features and
vulnerability occurrences. In a separate study [16], three static
analysis tools, namely Clair, Anchore, and Microscanner, were
evaluated by analyzing 59 public images specifically targeting
Java applications. Although these studies provided valuable
vulnerability statistics through static analysis of container
images, their detection coverage and analysis were limited
due to their focus on base-level or OS-level analysis. In
contrast, our proposed system offers broader vulnerability
coverage by examining both the base and package layers of
an image, encompassing a more comprehensive assessment of
vulnerabilities.

In studies conducted by researchers [19] and [20], the
effectiveness of static and dynamic analysis in detecting vul-
nerabilities in Docker images was investigated. The use of
Clair for static analysis was highlighted in [19], while [20]
compared different container implementations with Docker
and explored multiple security tools for both dynamic and
static analysis. While dynamic analysis tools were found to
outperform static analysis in these studies, our paper demon-
strates that the detection rate of static analysis can be further
improved. Furthermore, in resource-constrained scenarios such
as pre-deployment scanning for shared cloud platforms, our
solution’s adoption of static analysis proves to be the more
favorable choice due to its lower resource consumption.

In their work [21], the authors introduce DAVS, a novel tool
for Docker image analysis that utilizes Dockerfile information
to perform targeted scanning of specific image layers using
CVEBinTool. A comparison between Clair and CVEBinTool
is presented, revealing a low overlap between the two tools.
However, the paper lacks a proposed methodology for effec-
tively combining these tools to enhance overall vulnerability
detection in an image. In contrast, our proposed solution not
only addresses this gap by incorporating both base and pack-
age layer analysis, but also offers different analysis modes,
including identification of unique vulnerabilities, maximum
vulnerability detection, and balanced performance across these
metrics. This comprehensive approach strengthens the overall
vulnerability detection capabilities of our solution.

In their work [22], the authors explore Docker’s inter-
nal and external security, highlighting security systems like
SELinux and AppArmor. They outline different aspects of
internal security in Docker, including process isolation, file
system isolation, IPC isolation, device isolation, and network
isolation. Papers such as Docker-sec [23] and Lic-Sec [24]
propose container protection techniques. Cavas [25] tracks
containers using security containers and employs OWASP
Zap for dynamic analysis. The use of security tools and
static image analysis is discussed in [17]. Alyas et al. [26]
propose container profiling for detecting suspicious activities.
Securing Docker containers is explored in [27]. In [28],
the authors present RSDS, a system that combines dynamic
and static analysis to extract necessary system calls for a
specific container, reducing the risk of triggering security



vulnerabilities in the host kernel. While these studies touch
on container vulnerability protection measures, they offer
limited insights into vulnerability detection specifically within
container images, whereas our proposed solution focuses on
comprehensive vulnerability detection in container images.

III. BACKGROUND

In this section, we provide backgrounds on the layered
structure of Docker images, the process of static analysis and
how various static analysis tools work.

A. Docker Image Layers and Contents

Docker images are mainly composed of two layers: base
OS layer and non OS layer. Base OS layer are the first
few layers of a Docker image and typically contains the
operating system components. On the other hand, the non OS
layers, also known as application package layers, contain the
user’s application code and other dependencies required by
the application. These layers are writable, and users can add,
remove or modify their contents. Each layer has a specific
structure of contents, with the base OS layer consisting of
files such as system libraries and kernel modules. In contrast,
the non OS layers contain application-specific files such as
binaries, libraries, and configurations. These files make up the
application stack that is built on top of the base OS layer.
Overall, understanding the layout of a Docker image and its
layer contents is crucial for creating and managing containers
effectively. By knowing what types of files each layer contains
and how they are structured, users can optimize the build
process and ensure their containerized applications are secure
and efficient.

B. Container Image Scanning with Static Analysis Tools

Container image scanning using static analysis is a process
of identifying vulnerabilities within container images. The
scanning process involves analyzing the names and versions
of the packages in the container image against a vulnerability
database that contains publicly known security vulnerabili-
ties, also known as Common Exposures and Vulnerabilities
(CVEs). Some popular open-source container scanning tools
include Grype [12], Snyk [13], Trivy [14] etc. Grype is
an open-source tool that can analyze container images and
report vulnerabilities based on OS and application package
metadata and contents. Snyk is a cloud-based tool that provides
comprehensive security testing for container images and can
detect vulnerabilities in both OS packages and application
packages. Trivy is another open-source tool that can scan con-
tainer images for vulnerabilities in OS packages, application
dependencies, and libraries.

Although these tools excel at identifying vulnerabilities in
OS packages, they are less effective at detecting vulnerabilities
in application packages. OS packages typically have a stan-
dardized structure, with well-documented and easily identifi-
able vulnerabilities. In contrast, application packages exhibit
greater complexity and diversity, posing challenges for static
analysis tools in accurately pinpointing application package

vulnerabilities. Nevertheless, leveraging container scanning
tools remains a crucial aspect of container security. Their
efficacy can be enhanced by integrating them with complemen-
tary tools, as demonstrated in Section VI, to achieve broader
coverage and improved vulnerability detection.

IV. METHODOLOGY

In this section, we present the methodology of our tool
that utilizes static analysis for pre-deployment scanning of
container images to enhance vulnerability detection coverage
with the usage of existing tools.

Fig. 1 shows an overview of our proposed approach that
covers two major steps:

• Base analysis, which primarily detects and identifies
known vulnerabilities in the image’s operating system
base images (such as Ubuntu, Alpine, and Debian), which
serve as the canvas for the image to build upon.

• Package analysis, which attempts to detect known vul-
nerabilities introduced in the image by application layers
containing user packages.

By combining these two components, we achieve com-
prehensive coverage of both base OS and application-level
packages, surpassing the capabilities of standard commercial
static analysis tools. Our approach integrates these components
based on scan profiles and threshold scores, merging the
detected vulnerabilities to generate a comprehensive report.
Furthermore, our system calculates a vulnerability score (v-
score) to assess the image’s vulnerability status and determine
its eligibility for uploading to the shared cloud platform. The
subsequent subsections provide a detailed description of these
components and the functioning of our architecture.

A. Approach Overview

The main architecture is the driver of the components which
binds all the modules and holds the program logic. The main
architecture is tunable, that is, it has various parameters that
can be modified by the user according to his/her scanning
needs. Also, our architecture has various types of scans, which
will also be discussed here.

1) User Choices: Our tool is dynamic in a sense that it
gives the users couple of choices to configure and tune the
tool’s performance. The users can configure settings, such as
the scan type, scan profile, and t-score, as explained here and
shown in Fig. 2.

1) Scan Types: Users have the choice to pick from three
scan types, as shown in Fig. 2, namely: light, thorough
and adaptive, to allow the users choose how deep the tool
would scan. This is discussed in more details below.

2) Scan Profiles: The scan profiles in our system detect
vulnerabilities using different tools and vary in terms
of the number and types of vulnerabilities they catch.
From Fig. 2 it is seen that we have defined three scan
profiles: maximum, balanced, and unique vulnerabilities.
The unique vulnerability option utilizes Grype to find
the most distinct vulnerabilities, while the maximum



Fig. 1: Proposed approach.

Fig. 2: Categories of user choices.

vulnerability option employs Snyk to detect the highest
number of vulnerabilities.

3) T-score: The threshold score (t-score) enables the user
to define the acceptable level of vulnerability for the
image. Following the complete scan, a vulnerability
score (v-score) is calculated. If the v-score is below the
t-score, the image is eligible for uploading to the cloud
platform. The t-score determines the user’s tolerance for
vulnerability based on the severity of the image.

While the tool comes with default values for these param-
eters, offering users multiple choices empowers them with
greater control. Considering that the acceptable vulnerability
landscape varies across different use cases, this flexibility
proves invaluable in assisting users to align the tool with their
specific requirements.

2) Scan Types: There are three scan types that can be
chosen, that is: light, thorough and moderate. These are
discussed below:

1) Light Scan: Light scan is the fastest scan among the
three, where only the base analysis is performed. There-
fore, this scan delivers the performance and detectability
equivalent to that achieved by running static analysis
tools exclusively.

2) Thorough Scan: By sequentially triggering both the
base analysis and package analysis modules, this scan
surpasses the detection capabilities of the Light Scan.
With comprehensive coverage of both base and applica-
tion package layers, it achieves the highest vulnerability
detection rate, but at the cost of highest processing time.

3) Adaptive Scan: The Adaptive scan is ideal for resource-
constrained scenarios where a thorough scan is desired
without excessive resource consumption, such as in
shared cloud platforms where much resources cannot
be allocated for scanning the vulnerability an image. It
starts with the base analysis module and only invokes the
package analysis if the detection rate in the base analysis
falls below the acceptable vulnerability threshold (b-
score < t-score). If the base analysis already exceeds the
threshold (b-score ≥ t-score), the scan concludes with
a vulnerability report, skipping the package analysis.
Fig. 3 shows the workflow for this scan.

B. Base Analysis

According to the Section III-A, container images are typ-
ically comprised of multiple layers, each corresponding to a
line in the configuration file. Among these layers, the base OS
layer contains commands to include the operating system on



Fig. 3: Adaptive scanning workflow.

which the container will run. These layers, which we refer to as
base layers, contain a variety of configuration files, binary files,
and OS packages that may be vulnerable [29]. Additionally,
OS packages may be installed later through image creation
commands, which also have the potential to be vulnerable [21].
The goal of base analysis is to detect vulnerabilities introduced
by these cases.

We utilize established commercial tools, namely Grype,
Trivy, and Snyk, for base analysis. These tools extract OS
information, limited package details, and match them against
the CVE database, reporting vulnerabilities along with relevant
data such as CVE numbers and CVSS severity scores.

Fig. 4a illustrates the steps involved in base analysis. A
Docker image is provided as input and passed through static
analysis tools (Grype, Snyk, and Trivy) based on the chosen
scan profile. Each tool generates a base report, including CVE
entries, detection layers, and frequencies. The base score (b-
score) is calculated as the mean of the CVSS scores of the
reported vulnerabilities.

C. Package Analysis

Package analysis is essential for detecting vulnerabilities
in application packages within container images, typically lo-
cated in non OS layers above the base OS. These layers consist
of application packages, binaries, codes, and database files,
all prone to vulnerabilities. Unlike commercial static analysis
tools that are inadequate in detecting non OS application
package vulnerabilities and other introduced files, package
analysis plays a vital role in addressing these limitations.

Nonetheless, package analysis presents challenges such as
images having a higher number of application packages com-
pared to base OSs, with users having the ability to introduce
vulnerabilities through modifications. Indexing approaches
used by commercial tools are less effective for application
package vulnerabilities. Instead, a more effective approach in-
volves hash-matching binary and program files with vulnerable
signatures, albeit with slightly longer processing times. Intel’s
CVE Binary Tool (binTool) adopts this strategy, making it the
tool of choice for package analysis.

(a) Base analysis overview. (b) Package analysis overview.

Fig. 4: Overview of the two most important approaches: base
and package analysis.

The steps for package analysis are depicted in Fig. 4b.
Initially, the packages used in constructing the image are
extracted from different layers of the Docker images, each
corresponding to a Dockerfile command. These layers are then
analyzed to identify potentially vulnerable files (PVFs) within
the image. To investigate these PVFs for vulnerabilities, the
powerful BinTool is employed. By comparing binary files to a
database of Common Vulnerabilities and Exposures (CVEs),
BinTool ensures comprehensive detection of application vul-
nerabilities throughout the image, layer by layer. Finally, the
layer reports are combined to prepare the package report,



and a package score (p-score) is calculated from the CVEs
using their CVSS scores, similarly to the base layer b-score
calculation.

Package vulnerability detection tools don’t perform well in
detecting base OS vulnerabilities in regards of base analysis
tools, because these tools: 1) follow different methods to detect
vulnerabilities, 2) while base analysis tools are specialized for
base OS vulnerability detection, the package analysis tools are
not. Therefore, both of these tools are necessary for a better
coverage of the vulnerability landscape of container images.

V. FRAMEWORK DESIGN

This section provides the design of our framework with its
implementation details.

A. The Main Architecture

The main architecture combines all the modules discussed
above, as well as a workflow to bind them and use their outputs
to finally find a pass or fail result. We discuss the inputs,
workflow and output of the main architecture in detail.

1) Input: The main architecture takes a target image as
input, specifically Docker images from Docker Hub or local
Docker images. The image is directly supplied to the base
analysis component, while for the package analysis module,
some pre-processing is required. In this step, we utilize bin-
Tool to scan binaries and application packages for vulnerabil-
ities. However, binTool cannot directly scan container images,
so we locally save the Docker image and extract its layers,
which then serve as the input for the package analysis module.

2) Vulnerability Scanning: Our vulnerability detection pro-
cess begins after the input is prepared. With three scanning
modes available, the base analysis module is triggered initially.
Upon completion, the base report and associated b-score are
obtained. Light scanning compares the b-score to the t-score
to determine the upload decision, while thorough scanning
activates the package analysis module to generate a package
vulnerability report and p-score. The merging of these reports
and scores (b-score and p-score) yields the final v-score, which
is compared to the t-score for the upload decision. Adaptive
scanning adjusts between light and thorough scanning based
on the image’s vulnerability level and user preferences, skip-
ping the package scan if the b-score exceeds the t-score, and
following a similar workflow otherwise.

3) Combination of Reports: Upon completion of the scan-
ning process, depending on the chosen scan type, we may
obtain both the base and package scan reports, each accom-
panied by a corresponding score: the base score (b-score)
and package score (p-score), respectively. These scores are
computed by aggregating the CVSS scores of the detected
vulnerabilities using methods such as average, harmonic mean,
or geometric mean. In our implementation, we employ the
average method as it is easily interpretable and provides a
comprehensive measure of the vulnerability landscape. Once
we have both reports, the next step involves merging them to
generate the final vulnerability score (v-score) for the Docker
image. Considering that the reports may contain duplicate

entries for the same vulnerabilities, we follow the subsequent
steps:

1) For vulnerabilities with matching CVE IDs and layer
numbers in both reports, we consider them as the same
vulnerability. We determine the frequency of these CVEs
by selecting the highest count from their appearances in
the reports.

2) Vulnerabilities with differing CVE IDs or layer numbers,
or both, are treated as distinct vulnerabilities and are
directly included in the final report without any modifi-
cations.

These steps basically does a union operation of the two reports.
This can be easily done in O(n) using techniques like sliding
window, given the vulnerabilities are sorted by CVE scores.
After which, he v-score is calculated from the merged report,
and its comparison to the user-defined t-score determines if the
container image is safe for uploading or not. In both cases, the
user can view the final vulnerability report to take future steps
if he requires.

B. Base Analysis

The Base Analysis component is the initial stage in our
architecture, focused on scanning the base OS of the Docker
image. This includes examining OS packages and dependen-
cies, some of which may also be introduced in subsequent
layers of the container. To generate vulnerability reports, we
utilize three well-known and effective open-source container
image static analysis tools: Grype, Snyk, and Trivy. These
tools are specifically chosen for their expertise in identifying
vulnerabilities related to Docker base images. Table I provides
additional information about these tools.

Scanning Tool Grype Snyk Trivy
Version 0.52.0 1.1088.0 0.34.0

Created By Anchore Snyk IO Aqua Security
OS Packages

Supported
9 9 16

Language
Packages

Supported

8 - 10

Extra Support - Unmanaged
softwares (2)

-

TABLE I: Container image static analysis tools.

Another important part is how these tools behave differently
to the same base images. Upon our manual checking of the
vulnerabilities caught in 111 images using these tools, we have
observed the following trend:

1) Grype finds unique vulnerabilities, that are not normally
detected by the other tools.

2) Snyk detects the most amount of vulnerabilities.
3) Trivy provides a more balanced vulnerability detection.
The different behaviors of these tools, stemming from

differences in their vulnerability databases and implementa-
tion, have inspired the creation of various scan profiles in
our tool. These customizable profiles provide greater control
over the tool’s behavior, allowing it to excel in different



situations. While we currently utilize three specific tools in
our base analysis, our architecture is not restricted to them,
demonstrating the potential for interchangeability with other
tools to achieve a range of results.

Grype and Trivy are Linux packages installed for scanning
container images, while Snyk serves as the official Docker
container vulnerability scanner, accessed through dockerd’s
(Docker daemon) APIs. These tools generate a package and
OS information list from the image, which is then queried
against their respective vulnerability databases. They report
vulnerabilities related to the specific OS and package versions.
However, these tools may not detect back-ported packages or
fixed vulnerabilities, limiting their coverage. Nonetheless, their
speed and efficiency make them suitable for the initial layer
of our architecture.

C. Package Analysis

To enhance our understanding of the image’s vulnerability
landscape, we conduct package analysis using the CVE Binary
Tool. This analysis is triggered under specific conditions and
allows us to delve deeper into the image’s layers. The tool
performs static analysis by examining binary file strings for
matches with known vulnerabilities in popular open source
libraries. Although BinTool currently supports 254 packages,
it cannot be directly applied to images. To overcome this
limitation, we follow a specific workflow to make it compatible
with container analysis.

1) The image is first saved locally. This can be done by
docker save imageName > imageName.tar
command, built into the Docker command line. This
saves the provided image to a TAR archive file.

2) Upon extraction, the archive file reveals the structure
below.

a) repositories file that contains the image informa-
tion and SHA256 hash of the content of the image.

b) manifest.json file containing configuration file
names and the SHA256 hashes of the layers.

c) hash named config.json file, provides additional
image details such as architecture, environment
variables, creation time, layer history, and the com-
mands used to create each layer.

d) hash named layer folders, as many as there are
commands needed to create the image. Each layer
folder again contains 3 files inside it:
i) JSON file containing layer related information.

ii) VERSION file having layer version.
iii) layer.tar file which contains the actual contents

of that layer, including binary files, packages,
info and configuration files etc.

e) We extract the layer.tar file to access its
contents and relabel each layer for clarity. This
results in n layers, n representing total layers in
the image.

3) After extraction, we run binTool on each layer, receiving
individual layer reports.

4) Vulnerability reports of each layer are merged as a final
report for the package analysis layer.

The package analysis level enhances our understanding of
package vulnerabilities in the image, offering a more com-
prehensive view. Fig. 5 presents the workflow for this layer,
showcasing its effectiveness in detection.

Fig. 5: Workflow for package layer scanning.

VI. EXPERIMENT

We evaluate our architecture through practical experiments
on both official and community Docker images collected
from Docker Hub. In the following sections, we present the
experimental results.

A. Image Discovery

We analyze vulnerabilities in various Docker images, which
are constructed using Dockerfiles containing diverse Docker
commands. To evaluate the effectiveness of our architecture,
we focus on two image categories: official and community
images sourced from Docker Hub.

Docker Hub acts as an open-source repository hosting
official images maintained by Docker and its partners, as well
as community images from the Docker community. Official
images undergo rigorous testing, earning them widespread
trust and adoption for popular applications. To assess our
architecture, we focused on the top 50 latest-tagged official
images, representing most recently patched versions. From
this selection, 33 images were chosen at random for analysis,
examples include Alpine, Nginx, Busybox, Ubuntu, Python,
Redis, among others. These images serve as parent images or
as the basis for creating other images. As vulnerabilities can
propagate from parent images to child images [18], we select
these parent images as prime candidates for our investigation.
Pulling these images from Docker Hub, we conducted our
evaluation in parallel with renowned tools, promptly deleting
each image after analysis to optimize storage.

Collecting community images, which comprise almost 99%
of Docker Hub repositories, presented a challenge without a
predefined list of commonly used images. Nonetheless, we
successfully obtained 78 Dockerfiles from two random public
GitHub repositories12, to create and analyze corresponding
images. Adhering to our methodology, we deleted each com-
munity image post-analysis to ensure storage efficiency. In

1https://github.com/jessfraz/dockerfiles
2https://github.com/komljen/dockerfile-examples



Metrics
Official Images: 33

Grype Snyk Trivy CVE-Bin-Tool Our Architecture
Combination
of Grype &

BinTool

Combination
of Snyk &

BinTool

Combination
of Trivy &

BinTool

To
ta

l
C

V
E

s Average 187.09 305.24 186.24 241.21 427.84 546.12 427.12
Median 78 108 78 264 345 423 346
Mode 0 0 0 7 8 8 8
Standard Deviation 348.64 559.43 347.26 186.47 475.85 674.82 474.0
Max 1112 1796 1113 614 1561 2246 1563
Min 0 0 0 2 2 2 2

U
ni

qu
e

C
V

E
s Average 77.91 61.18 77.72 156.66 230.93 214.45 230.72

Median 16 21 32 151 195 194 197
Mode 0 0 0 7 8 8 8
Standard Deviation 125.65 92.09 124.07 125.83 223.68 194.53 222.07
Max 389 297 390 430 705 654 706
Min 0 0 0 2 2 2 2

U
ni

qu
e

Pa
ck

ag
es Average 40.48 16.96 40.33 9.66 49.78 26.45 49.63

Median 37 11 37 8 43 24 43
Mode 0 0 0 2 3 3 3
Standard Deviation 48.029 19.65 47.2 7.36 52.42 24.52 51.62
Max 154 80 153 26 170 13 170
Min 0 0 0 1 1 1 1

TABLE II: Number of vulnerable CVEs and packages found per official image.

Metrics
Community Images: 78

Grype Snyk Trivy CVE-Bin-Tool Our Architecture
Combination
of Grype &

BinTool

Combination
of Snyk &

BinTool

Combination
of Trivy &

BinTool

To
ta

l
C

V
E

s Average 71.24 182.69 65.09 183.15 254.04 365.53 247.93
Median 3.5 125.5 0 60.5 111 199 70
Mode 0 0 0 3 3 3 3
Standard Deviation 125.4 268.92 124.95 214.5 288.48 455.93 288.66
Max 767 1244 768 934 1375 2007 1376
Min 0 0 0 2 2 2 2

U
ni

qu
e

C
V

E
s Average 40.012 48.98 36.25 128.82 165.31 174.32 162.33

Median 2.5 20.5 0 52 86.5 93 58.5
Mode 0 0 0 3 3 3 3
Standard Deviation 67.07 67.18 66.47 148.078 179.8 196.48 179.6
Max 336 263 367 695 737 910 738
Min 0 0 0 2 2 2 2

U
ni

qu
e

Pa
ck

ag
es Average 19.91 15.39 19.28 7.53 27.28 22.78 26.7

Median 2 0 8.5 6 9 18 7
Mode 0 0 0 2 2 2 2
Standard Deviation 29.91 18.19 30.14 6.27 33.3 22.8 33.46
Max 127 67 127 32 145 91 145
Min 0 0 0 1 1 1 1

TABLE III: Number of vulnerable CVEs and packages found per community image.

total, our analysis encompassed 111 images, offering a com-
prehensive assessment of vulnerabilities within both official
and community images.

B. Comparison of Our Proposed Framework and Different
Tools to Detect Vulnerabilities

In this series of experiments, we conduct a comparative
analysis between our solution and major existing tools such as
Grype, Snyk, Trivy, and CVEBinTool, focusing on the average
number of detected vulnerabilities. After gathering the images,
we independently run each of the four tools and subsequently
execute our pipeline, activating both layers of our architecture
for comprehensive analysis.

Tables II and III present diverse vulnerability metrics for
official and community images, respectively. Our analysis
encompasses a total of 111 images, considering three key
factors: total CVE count, unique CVE count, and unique
package count.

Both the official and community images exhibit a consistent
pattern where the individual performance of the four tools
varies depending on the specific scenario, such as identifying
unique or maximum vulnerabilities. However, our pipeline
consistently outperforms the standalone usage of these tools.
This superiority is attributed to the significant differences in
the domains covered by the three OS package scanner tools



and binTool. Simultaneously utilizing these tools leads to a
higher detection rate of vulnerabilities compared to using
them individually. Notably, binTool demonstrates a higher
average detection of vulnerabilities, including some unique
ones. On the other hand, the other three tools excel in detecting
unique packages. By combining the outputs of these two tool
sets, we achieve enhanced detection and coverage, as clearly
demonstrated in the table results. Based on the data, it can be
inferred that:

1) To detect the most amount of CVEs: The combination
of Snyk and binTool detects the highest number of
vulnerabilities in images compared to other tool com-
binations or individual tools, with Snyk detecting the
maximum number of CVEs among the base analysis
tools (Grype and Trivy), while utilizing it with CVE-
Bin-Tool improves vulnerability detection estimation.

2) For identifying unique CVEs: For official images, the
combinations of Grype with binTool and Trivy with
binTool have shown superior performance. However,
for community images, the combination of Snyk with
binTool emerges as the top performer. Therefore, the
choice between the two can be adjusted based on the
type of image being analyzed.

3) For detecting unique packages: Grype consistently out-
performs Trivy and remains the preferred option. Con-
sidering the prevalence of community images in real-
world scenarios, utilizing Grype in combination with
binTool is the recommended choice for improved vul-
nerability detection.

Another observation is that in community images, the
average number of vulnerabilities is lower compared to official
images. This is attributed to the utilization of base layer images
such as Alpine and Ubuntu, which inherently have lower
vulnerabilities at the OS level.

C. Reported Images with atleast one vulnerability

We also compare the number of images with atleast one
reported vulnerability among the tools, which shows the
strength of our pipeline’s detection. This analysis provides an
estimation of the pipeline’s superior coverage and detection
capability compared to other tools. In Table IV, we observe
that static analysis tools achieved approximately 80% coverage
for official images, while our pipeline identified at least
two vulnerabilities even in the best-performing images (Table
II), therefore detecting vulnerability for all official images
tested. For community images, detection rates varied, with
Trivy performing the lowest at 44.87%, while other tools
achieved closer to 60-70% detection. However, our architec-
ture achieved 100% vulnerability coverage by leveraging bin-
Tool’s detection of application package vulnerabilities. Thus,
our proposed architecture excels in detecting vulnerabilities
that other tools may miss, showcasing the strength of combin-
ing base OS and application package vulnerability analysis.

Image Class Official Image Community Image
Number of Images 33 (100%) 78 (100%)

Grype 26 (78.78%) 46 (58.97%)

Snyk 27 (81.81%) 47 (69.25%)

Trivy 27 (81.81%) 35 (44.87%)

CVE-Bin-Tool 33 (100%) 78 (100%)

O
ur

ar
ch

ite
ct

ur
e Grype and

BinTool
33 (100%) 78 (100%)

Snyk and
BinTool

33 (100%) 78 (100%)

Trivy and
BinTool

33 (100%) 78 (100%)

TABLE IV: Number (percentage) of vulnerable images having
at least one vulnerability detected by our framework and other
existing tools.

VII. DISCUSSION

This study introduces a comprehensive framework for de-
tecting and assessing vulnerabilities in container images. By
calculating a vulnerability score (v-score) based on CVSS
scores obtained from identified CVEs and comparing it to a
threshold score (t-score), users can make informed decisions
on whether to proceed with the image or discard it. Images
with v-scores lower than the t-score are considered suitable
for creating containers, while those with higher v-scores pose
a threat and should not be deployed. These more vulnerable
images can be further analyzed in a controlled environment
to determine the specific vulnerabilities contributing to their
high scores.

Our framework comprises of two essential steps: base
analysis and package analysis. These two steps are specifically
designed to address vulnerabilities related to OS packages
and non-OS packages, respectively, thus providing superior
coverage over a target image’s vulnerability landscape. These
steps are seamlessly integrated within a pipeline, allowing
for easy incorporation of other scanning tools without requir-
ing any architectural changes. By running the testing image
through additional tools and comparing their results with our
framework, a comprehensive analysis of the image can be
obtained.

While our focus in this study is on Docker containers, it is
important to note that the process of creating and working
with container images may vary slightly across different
container platforms such as Kubernetes or Apache Mesos.
However, the underlying concept of container image creation
and analysis remains consistent. Our framework is adaptable
to these platform-specific differences, requiring only minor
adjustments in the image extraction process. Regardless of
the container platform, our framework provides a flexible and
portable solution for assessing the security of containerized
applications, leveraging the benefits of containerization in
software packaging and distribution.



VIII. CONCLUSION

Containerization has revolutionized software packaging and
deployment, but it brings security challenges due to the
presence of vulnerable packages and inclusions in container
images. In this study, we presented a two-layer architecture
to detect vulnerabilities in container images before deploying
them in production environments. The first layer focused on
OS-level package scanning by analyzing base OS layers, while
the second layer employed an application package analysis
tool to examine non-OS layers. The novelty lies in finding
the gap of tools and employing them in our architecture to
achieve better vulnerability detection. Our experiments with
111 Docker images, including both official and unofficial
images from Docker Hub, revealed that our architecture con-
sistently outperformed individual commercial static analysis
tools like Grype, Snyk, and Trivy in detecting vulnerabilities.
We achieved higher coverage and detection rates, particularly
for vulnerabilities that other tools failed to report.

Despite these achievements, our work has limitations. Cur-
rently, our tool focuses on pre-deployment scanning and lacks
post-deployment analysis, which we plan to address in future
work by incorporating dynamic analysis and learning-based
techniques. Additionally, our evaluation is specific to Docker
images and does not encompass other container technologies.
Future research can expand the scope of our tool and provide
recommendations for addressing specific vulnerabilities. We
will also investigate the time requirement of our framework at
different stages. Furthermore, we aim to enhance our tool with
monitoring capabilities for individual or bulk images. Overall,
our proposed architecture offers developers and organizations
a valuable means to better understand the gap of existing static
analysis tools and ensure the security of their container images.
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