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ABSTRACT
With the emergence of 5G networks and their large scale applica-

tions such as IoT and autonomous vehicles, telecom operators are

increasingly offloading the computation closer to customers (i.e., on

the edge). Such edge-core environments usually involve multiple

Kubernetes clusters potentially owned by different providers. Confi-

dentiality concerns could prevent those providers from sharing data

freely with each other, which makes it challenging to perform com-

mon security tasks such as security verification and attack/anomaly

detection across different clusters. In this work, we propose a so-

lution for building cross-cluster security models to enable various

security analyses, while preserving confidentiality for each cluster.

We design a six-step methodology to model both the cross-cluster

communication and cross-cluster event dependency, and we apply

those models to different security use cases. We implement our so-

lution based on a 5G edge-core environment that involves multiple

Kubernetes clusters, and our experimental results demonstrate its

efficiency (e.g., less than 8 seconds of processing time for a model

with 3,600 edges and nodes) and accuracy (e.g., more than 96% for

cross-cluster event prediction).

1 INTRODUCTION
Cloud and Kubernetes clusters have become standard and common-

place solutions enablingmore cost-effective deployment of 5G appli-

cations. At the same time, to support large-scale applications such

as IoT and autonomous vehicles, telecom operators are increasingly

offloading the computation closer to customers (i.e., on the edge) in

order to satisfy the latency and throughput requirements [15, 41].

While these strategies improve the overall performance and qual-

ity of service, security is often an afterthought: the distribution of

workload among multiple clusters may increase the attack surface,

the offloading or extending of the cloud may potentially involve

less trusted or less protected edge providers. Moreover, confiden-

tiality concerns of the providers may prevent them from sharing

data freely with each other [38], particularly in scenarios where

data sovereignty and cross-border data transfers are involved or

when no prior trust relationship has been established.

There exist various security solutions for clouds and Kubernetes

clusters, such as security verification [45], security impact predic-

tion [63], and attack/breach detection [2] (a more detailed review of

related work is given in Section 10). However, most such solutions

are designed for enforcing security locally at each cluster, and they

cannot be easily extended across multiple (edge and core) clusters.

Furthermore, as mentioned above, the providers of those clusters

would be reluctant to disclose confidential or private information

about their infrastructure and users. This makes it infeasible to

apply those existing security solutions on a central copy of data

from all the clusters, which is necessary for many security analyses,

such as verifying cross-cluster security breaches, detecting cross-

cluster attacks, or predicting events across multiple clusters. To

make things worse, as containers and cloud-native computing [13]

are widely adopted due to their clear advantages in terms of less

overhead and better performance, these also suffer from buggy

images and weaker isolation compared to full-fledged VMs. For this

reason, container environments and container orchestrators (such

as Kubernetes) have become attractive targets of various security

attacks [62]. Considering that more and more providers of critical

services, including 5G core Network Functions (NFs) [21], are mov-

ing to the cloud, addressing those limitations is a pressing concern.

Motivating Example. To make our discussions more concrete,

we present a motivating example in the context of 5G networks.

Specifically, Fig. 1 depicts a typical 5G edge-core environment,

where the core cluster is owned by a mobile network operator who

provides private 5G services [54, 57] as a managed service to two

different vertical industries, Company 1 and Company 2, who own

the two edge clusters. The two General Data Protection Regula-

tion (GDPR) [50] icons attached to the two edge clusters indicate

confidentiality concerns about leaking user information, which

prevent Company 1 and Company 2 from sharing their data freely

with the mobile network operator. On the other hand, they have

to rely on the operator to provide necessary 5G core services and

functionalities, including security solutions.

In particular, suppose the administrators of the two edge clusters

would like to verify a given security policy that their services are

completely isolated from each other. For this purpose, as demon-

strated by the call-outs, the administrators build graphic models

about communications inside each cluster. Looking at each such

local model alone, each administrator is convinced that the policy

is satisfied since all the communications are limited to be between

network functions inside the cluster. Similarly, the core adminis-

trator also sees nothing wrong in his/her local model (note the two

network functions shown in gray color are not a concern as it is

quite normal for some resources in the core to be shared [31]).

However, as demonstrated in the call-out at the bottom, relying

solely on local models is insufficient to capture potential cross-

cluster security breaches. Specifically, both edge administrators fail

to see the fact that one of the network functions in Edge 1 can actu-

ally reach another network function in Edge 2 through the core (e.g.,
due to amisconfiguration in the AUSF and SMF2 network functions).

This violation of the given security policy cannot be identified based

on the local models alone, and is only visible in a global model com-

prising information across all three clusters, as shown in the figure.

Nonetheless, the aforementioned confidentiality concerns mean

that such a global model cannot be trivially built by collecting data

from all clusters. Instead, a solution must carefully balance between

the need to build the global model to enable security solutions and

the need to preserve confidentiality for each cluster.

Our solution. We propose an approach to build cross-cluster

security models (CCSM) to address the aforementioned challenge.

Specifically, we design a methodology to (i) construct local security

models at each edge cluster, and extend them to establish external

links to other clusters, (ii) prune and anonymize the local models
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Figure 1: Motivating example

to avoid unnecessary information sharing before sending them to

the core cluster, and (iii) construct and prune the global model at

the core cluster before sending it back to each edge cluster. While

this general methodology can potentially be applied to many dif-

ferent security models, we demonstrate such applicability through

instantiating it to capture two complementary 5G security perspec-

tives, namely, the communication among 5G network functions

and the dependency among 5G events. Furthermore, we show how

those security models may enable verifying cross-cluster security

breaches, detecting cross-cluster attacks/anomalies, and predicting

cross-cluster security impacts. As a proof of concept, we implement

the solution and integrate it with Kubernetes [39] and Free5GC [27]

(a popular open-source 5G network implementation), and evaluate

its effectiveness and efficiency through experiments.

Contribution. In summary, our main contributions are as follows:

- This work enables a wide range of cross-cluster security solu-

tions. Specifically, the proposed methodology can construct a

global view of multi-cluster environments while preserving the

confidentiality of each cluster. Such a global view contains im-

portant cross-cluster information (which are invisible at each

cluster) that could enable various security solutions to identify

cross-cluster security breaches, cross-cluster attacks/anomalies,

and cross-cluster security impacts, which would otherwise be

hidden if examined locally at each individual cluster.

- The proposed methodology consists of six steps for integrating

clusters’ local views in a confidential and scalable manner, and

distributing the constructed global view back to each cluster

on a “need to know” basis. This general methodology is instan-

tiated to capture both the communication among 5G network

functions and the dependency among 5G events, which com-

plement each other to provide more security perspectives. To

demonstrate the applicability of our solution, we describe three

potential applications of our solution including security verifica-

tion, attack/anomaly detection, and security impact prediction.

- To evaluate our solution, we generate the first multi-cluster

dataset covering both communications among 5G core network

functions and 5G control plane events in an edge-core testbed

environment involving multiple inter-connected Kubernetes clus-

ters. We integrate our solution into Free5GC, an open-source 5G

core implementation, and Kubernetes clusters. We evaluate our

solution through experiments which demonstrate its efficiency

(e.g., less than 8 s to process models with 3,600 edges and nodes)

and accuracy (e.g., more than 96% to predict cross-cluster events).

2 PRELIMINARIES
This section provides necessary background and our threat model.

Edge-Core Model and Private 5G. In the context of 5G networks,

the edge-coremodel is a distributed architecture allowing a provider

to move some resources and services closer to the user (i.e., at the

edge of the network) while keeping core functions in a central place

(i.e., at the core). An example of this model is shown in Appendix A

(due to space constraint). This allows better throughput and latency

for certain applications and addresses some confidentiality concerns

by keeping the network on-premises. Use cases like private 5G as

a managed service [54, 57] and inter-operator roaming [16] require

flexibility in distributing network functions between core and edge.

Private 5G is a concept encompassing the provision of tailor-made

network applications and services to private businesses and third-

party providers [66]. Due to the high costs of deploying a standalone

private 5G network on-premises, businesses can benefit from 5G

services provided by mobile network operators through managed

service providers. However, confidentiality concerns may inevitably

emerge due to potential conflict of interest and the risk of data (e.g.,

configs, network topology [54]) leakage to third party providers.

Our work addresses such concerns by leveraging confidentiality-

preserving, anonymization, and pruning mechanisms.

Communication and Event Dependency Models.We review

two existing models to capture communications and event depen-

dencies that will later be applied in our method.

Communication Model. This model depicts the existence of commu-

nications between network functions or between an NF and another

network element (e.g., gateway). Communication models are usu-

ally represented as directed graphs including two types of nodes,

namely, internal nodes representing NFs belonging to the local

cluster, and external nodes representing nodes belonging to other

clusters (which can be either the source or destination of communi-

cations with internal nodes). The presence of an edge between two

nodes indicates a directed network communication between those

two nodes, while no edge means no communication exists between

them. Communication models capture the connectivity dependency

between entities (e.g., reachability) and can be used to detect net-

work breaches and anomalous communications [17, 64]. As an ex-

ample, Fig. 2a shows the communication model (as a graph) for NFs

inside one cluster. For instance, SMF initiates a connection with sev-

eral other NFs, while it only accepts a connection initiated by AMF.

Event Dependency Model. An event dependency model depicts the

occurrence dependency (e.g., precedence or succession) between

two events. Event dependency models are represented with di-

rected graphs where nodes represent events and directed edges

represent dependencies between events. Event dependency models

are well studied (e.g., [25, 29, 34]) and used in different security

solutions, such as event prediction [37, 45] and anomaly detec-

tion [11]. The models can be constructed through gathering applica-

tion events (e.g., from logs, API calls, andmessages) and establishing

dependencies between such events based on different metrics (e.g.,
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frequency and closeness) or techniques (e.g., Bayesian learning,

LSTM, and 𝑛-gram). Fig. 2b depicts an excerpt of event dependency

model from a 5G core network. For instance, the event “AUSF-

HandleUeAuthPostRequest” depends on the event “AMF-Handle-

RegistrationRequest”, with the latter further depending on “AMF-

HandleInitiateUEMessage”, where UE is the mobile user equipment.

(a) Communication model. (b) Event dependency model.

Figure 2: Excerpts of communication and event dependency
models of a 5G core network

Threat Model. Our in-scope threats include security breaches and

attacks that involve multiple clusters (i.e., cross-cluster threats).

Such breaches and attacks may originate from misconfigurations,

user mistakes, or exploits of vulnerabilities by either insiders or

external attackers. We assume the breaches and attacks may be

identified based on the communications or event dependency mod-

els using existing security solutions including (but not limited to)

offline security auditing, runtime security monitoring, and security

impact prediction (as demonstrated in Section 8). Likemany existing

confidentiality-preserving solutions [9, 32, 72], we assume honest-

but-curious providers who follow the proposed methodology. Fi-

nally, the edge clusters may be hosted by third parties and hence

are assumed to be concerned about potential leakage of confidential

information to each other via their communications with the core.

Out-of-scope threats include breaches or attacks that are con-

tained inside a single cluster (as these can be tackled using existing

solutions [3, 11, 17, 37, 64]) or those that cannot be identified based

on the communication or event dependency models (e.g., container

or OS-level attacks). We do not consider malicious providers who

deviate from our methodology. Finally, we assume the integrity of

our solution itself, Kubernetes, and the underlying infrastructure

(including the data sources, such as network traffic and application

logs, used to build our models), and hence attacks that can tamper

with these are out-of-scope.

3 CCSM
This section presents an overview of the CCSM approach.

Overview. Fig. 3 illustrates an overview of the CCSM approach

to build cross-cluster security models for edge-core environments

involving multiple Kubernetes clusters. The inputs to CCSM are net-

work traffic and event logs collected from a multi-cluster environ-

ment. CCSM comprises two phases as follows. First, the Building Lo-
cal Models phase is to create local models for each cluster including

all the edges and core by following Steps 1 to 4. (1) CCSM constructs

local models for both communications and event dependencies from

network traffic and event logs, respectively. (2) It extends the local

models by identifying external nodes that interacts with the core.

(3) It prunes the other nodes in the local models that do not interact

with the core. (4) It anonymizes all the sensitive information in the

models (e.g., IP addresses, network function names) to protect the

confidentiality of an edge (typically owned by different tenants) and

share on a “need to know” principle. Second, the Building Global
Models phase is to combine local models to encompass a global view

of the security posture across all clusters by following Steps 5 and 6.

(5) CCSM constructs the global model for both communication and

event dependencies by aggregating local models for all edges and

the core. (6) It prunes the global model from the edges’ perspectives

to enable the creation of edge-specific views that are sent back to

respective edges. We further detail both phases in Sections 4 and 5.

Example. Fig. 3 shows a simplified example with the outputs of

CCSM. (1) The constructing local model step forms the communica-

tion model with the IP addresses for network functions (2.2.2.2
for the NF AMF) as the nodes and their communication as the edges

as well as the event dependency model with the event names as the

nodes (registration) and their transitions as the edges; where in-

ternal nodes are indicated as unfilled and external nodes as filled. (2)

The extending step identifies external nodes belonging to the core

on communication local models (marked as horizontally stripped)

and identifies the nodes on event dependency local models that have

dependencies with at least one node on core’s local model (depicted

as diagonally stripped) along with indicating the direction of these

dependencies. (3) The pruning step removes the other external node

(marked as filled black) and bottom middle (unfilled) node from the

communication model, as well as left bottom three (unfilled) nodes

from the event model, as none of them are directly connected to the

core. (4) The anonymization step anonymizes the NF name (AMF), IP
address (2.2.2.2), and event name (registration) to (7d6e...),
(192.168.26.5) and (892f...), respectively, using confidentiality-

preserving algorithms (e.g., Crypto-PAn [58]). (5) The constructing
global model step aggregates three local models for Edge 1, Edge 2

and the core (where nodes are indicated using no-pattern, diagonal

strips, horizontal strips, respectively). (6) The final step prepares

the specific views for Edge 1 and Edge 2, while pruning the non-

reachable part of a global model from that specific edge. We further

elaborate on this in Examples 1-4.

Security Applications. CCSM enables several security applica-

tions. First, it allows individual clusters to detect and predict secu-

rity issues in them that would not be completely possible using only

local models. Second, edge-specific views offer the possibility to au-

dit other (potentially untrusted) tenants of the cloud environments.

Third, our global model and edge-specific views can help adminis-

trators represent and assess the state of complex, distributed cloud

environments. We detail the use cases of CCSM in Section 8.

4 CCSM FOR COMMUNICATIONS
This section presents our methodology for building cross-cluster

security models for communication (the upper part of Fig. 3).

4.1 Building Local Communication Models
We detail how CCSM constructs a local communication model.

Constructing. To build communication models, our approach re-

quires to capture network traffic between NFs. To later aggregate

the local models, our approach relies on the external communica-

tions that each model shares with other clusters. CCSM identifies

two types of communications: between two internal IP addresses
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Figure 3: Overview of the CCSM approach

(internal) and between an external and an internal IP addresses (ex-
ternal). A single communication entry comprises the IP addresses of

the source and the destination of a communication, and it also stores

the name of the corresponding NF for internal IP addresses. For com-

munication models, this process is deterministic, as we construct

a directed graph with one node per unique IP involved in the com-

munication, and a directed edge between two given nodes based on

the existence of at least one communication record between source

and destination nodes in the network traces. Nodes are labeled with

the associated IP addresses and the name of the corresponding NFs.

Extending. This step is to distinguish those external nodes shared

with the core cluster from other external nodes (e.g., public IP ad-

dresses) in a confidential manner. To that end, our approach is to

identify external nodes in the edges’ local model that belong to the

core cluster (and virtually extend the reach of the edges’ local mod-

els to the core). The edge and the core clusters share their respective

external communications with each other and identify those in com-

mon without disclosing any sensitive data. More precisely, to verify

common connections between a given edge cluster and the core

cluster without disclosing any sensitive data (i.e., the NF name or IP

address), we utilize the private set intersection (PSI) algorithm [53],

a cryptographic method for secure multiparty computation [10].

PSI enables two entities to compute and find the shared elements

between their sets while keeping the non-shared items confidential.

Once common communications are identified, each edge tags the

corresponding external nodes as belonging to the core cluster.

Pruning. Local models can have a sheer size and therefore would

require intensive computational resources during the following

steps. Additionally, the network architecture that can be inferred

from the model may still contain potentially sensitive information

that individual clusters might be reluctant to share. To address both

these challenges, our idea is to prune the local models and only

preserve nodes and edges that are relevant to the global model

by removing nodes (and corresponding edges) that have no path

from/to an external nodes belonging to the core cluster. Our prun-

ing technique allows to greatly reduce the size of the local models

(as evaluated in Section 7) while preserving confidentiality by re-

moving nodes that are irrelevant for the security analysis.

Anonymizing.While disclosure of sensitive information of an edge

is partially ensured during extending and pruning steps, anonymiza-

tion aims at further decorrelating the edge cluster specific infor-

mation from its communication model. Therefore, our approach

anonymizes any sensitive data before sending the local model for ag-

gregation in the core cluster. In fact, the NF names and IP addresses

(which are sensitive data as they can be traced back to that particular

edge cluster) are anonymized using a format-preserving encryp-

tion (FPE) algorithm [5]. Particularly, for IP addresses, we leverage

Crypto-PAn [69, 70], an FPE algorithm specifically designed for

anonymizing IPs while preserving their subnet structures (which

might be useful for later investigations). Table 1 in Appendix B

shows several examples of applying Crypto-PAn on IP addresses.

Note that Crypto-PAn is utilized in this work as an example.

Any alternative, such as Mohammady et al. [46], can also be used

to overcome any potential concerns (e.g., fingerprinting and injec-

tion [7, 8, 71]). More generally, format-preserving encryption can

also be used for other attributes based on necessity, type of appli-

cation, and customer’s requirements. For other applications, CCSM

can anonymize different types of attributes (e.g., timestamps, owner,

namespace, etc.) using more general methods such as a generalized

framework which are provided by Xie et al. [68]. Similarly, the FF3

standard [20] is used to anonymize NF names.

Example 1. Figure 4 depicts an example of local communication

model building. First, in Fig. 4.a, CCSM constructs the initial version

of the local model (as a graph) based on the collected data, which

represents communications between four NFs (e.g., AMF, NRF, SMF,

and UPF) and four external IPs which are shown in the Captured
Connections and Kubernetes Pod IPs tables. The first two entries of

the Captured Connections table are used to create an edge for the

external communication between the AMF (192.168.1.12) and an
external IP (4.4.4.8), and for the internal communication between

AMF and NRF. Then, in Fig. 4.b, CCSM identifies three of those

external IPs (4.4.4.7, 4.4.4.8, and 4.4.4.9) as belonging to the

core cluster (through the use of PSI, not depicted in the figure) and

marks them accordingly. In Fig. 4.c, the nodes corresponding to NRF,

UPF, and external IP 3.3.3.7 are pruned, because none of those can
reach to or can be reached from any nodes in the core. Conversely,

SMF and AMF can reach the core IPs, therefore these nodes are
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kept. Finally, in Fig. 4.d, the name and IP addresses of remaining

internal nodes, such as AMF, are replaced with the anonymized

name, 7d6e..., and anonymized IP address, 223.87.156.187, by
using FF3 and Cryto-PAn, respectively. Algorithm 1 in Appendix C

describes the pseudo-code of this phase.

Figure 4: Example of the building local models phase

4.2 Building Global Communication Model
We detail how CCSM constructs global communication models.

Constructing the Global Model. In this step, we collect and ag-

gregate all local models (edges’ and core’s) based on their shared

nodes (previously identified in the extending step). The core cluster

takes local models (including its own) as graphs and computes their

mathematical union. It is made possible to find common nodes

between graphs since the external nodes (belonging to the core) are

not anonymized in the previous step. The obtained global commu-

nication model reflects how the edge clusters potentially interact

with each other through the shared nodes in the core.

Pruning to Generate Edge-specific Views. Once the global

model is built, it captures all cross-cluster relationships. However,

following the “need to know” principle, each edge cluster is only en-

titled to view the fraction of the global communication model that

is related to it. Therefore, we apply multiple times the same pruning

process as in the pruning local model step to the global model while

considering a different edge’s point of view at a time. Specifically,

for each edge, we create a restricted view of the global communica-

tion model by removing any node that cannot be reached from, or

cannot reach an internal node of the original local model. This en-

sures that each edge cluster receives only the relevant information

needed to improve their local security view, based on sharing the

least required information without unnecessary overhead. Finally,

once the edge-specific views are constructed, each view is securely

transmitted to the corresponding edge cluster (by leveraging exist-

ing methods, e.g., TLS).

Example 2. Figure 5 depicts an example of building a global model

from local models of Edge 1, Edge 2, and the core. First, in Fig. 5.e,

those three local models are aggregated into a global model based

on common external nodes previously identified (i.e., AUSF, SMF

and UPF for Edge 1; and UDM and AUSF for Edge 2). Then, in Fig. 5.f,

the global model is pruned to provide edge-specific views. For the

Edge 1 specific view, its internal nodes AMF and SMF are related to

the node (anonymized) 566e... in Edge 2 through the Core’s SMF

and UDM. Additionally, they are related to the node 4ed4... by

transitivity. However, the last node of Edge 2, a807..., is excluded
as it has no relationship with Edge 1 (i.e., no reachability to/from

Edge 1). Similar logic can be applied from the point of view of Edge 2.

Algorithm 2 in Appendix D presents the pseudo-code of this phase.

Figure 5: Example output of the global model building phase

5 CCSM FOR EVENT DEPENDENCIES
This section presents our methodology for building cross-cluster

security models for event dependencies (the lower part of Fig. 3).

5.1 Building Local Event Dependency Models
During this step, CCSM builds local dependency models capturing

the relationship between local events in edges and core.

Identifying Event Dependencies. Unlike communication models,

where dependency relationships can be assessed based on the pres-

ence or not of a network communication, the dependency between

two application events cannot be identified in a similar manner.

Instead, our key idea is to rely on two properties related to ordered

pairs of event instances, namely, temporal closeness and occurrence
frequency. We compute those properties for each ordered pair of

event instances in the cluster and compare them to their respective

user-defined thresholds to determine whether they have a depen-

dency relationship or not between their corresponding event types.

We present here our methodology to identify event dependencies,

which we leverage to construct the local event dependency models,

and then extend them to find the cross-cluster event dependencies

used for constructing the global model. More formally, given a set

of collected event types E = {𝐸1, 𝐸2, · · · , 𝐸𝑛} where 𝑛 is the num-

ber of different identified events types. Let (𝑒𝑝 , 𝑒𝑞) be an ordered

pair of event instances, where event 𝑒𝑝 happens at time 𝑡𝑝 , and

𝑡𝑞 > 𝑡𝑝 means event 𝑒𝑝 happens before event 𝑒𝑞 . We define event

dependency between two event types in a given ordered pair (𝐸𝑖 ,

𝐸 𝑗 ) as a Boolean function that captures the existence (or not) of

a dependency between those event types if the following holds:

| { (𝑒𝑝 ,𝑒𝑞 ) | (𝑡𝑞−𝑡𝑝 )≤𝑇𝑐 } |
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓 (𝑒𝑝 ) > 𝑇𝑓 , where 𝑇𝑐 ≥ 0 is a user-defined thresh-

old for the temporal closeness, which is defined as 𝑡𝑞 − 𝑡𝑝 for any

two instances of events, namely, 𝑒𝑝 of type 𝐸𝑖 and 𝑒𝑞 of type 𝐸 𝑗 .𝑇𝑓 ∈
[0, 1] is the user-defined threshold for the occurrence frequency of

ordered pair of events instances (𝑒𝑝 , 𝑒𝑞) when its closeness is less

than or equal to 𝑇𝑐 . This condition expresses that the occurrence

frequency should be strictly greater than𝑇𝑓 . Note that |_|means the

set size and 𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 (𝑒𝑝 ) counts the total number of occurrences

of the event instances 𝑒𝑝 of type 𝐸𝑖 independently of the instances

of event 𝑒𝑞 . Thus, only a subset of the possible dependencies of the

form 𝐸𝑖 → 𝐸 𝑗 will be considered in the event dependency model,

5



ACM CODASPY ’24, June 19–21, 2024, Porto, Portugal

which satisfy the closeness threshold and frequency threshold cho-

sen by the user.We show how the choice of these thresholds impacts

the dependency model generated by CCSM and provide guidelines

on how they can be chosen depending on the use case in Section 7.

Constructing. To build the event dependency model, we first col-

lect 5G event logs at the application level. This collection process

occurs at the NF level using Kubernetes’ Pods and containers log-

ging. Then, event logs from all 5G applications are subsequently

merged and sorted based on timestamps. Following this, the logs

are parsed to extract the event name (usually in the form of <NF
name>-<associated 5G procedure>. Afterwards, CCSM con-

structs a local model based on the two aforementioned parameters

(which will be referred as closeness and frequency, respectively, for
the rest of the paper) to find dependency edges. More specifically, for

any given ordered pair of event types (𝐸𝑖 , 𝐸 𝑗 ), we count the number

of times that an instance of event type 𝐸𝑖 is followed by an instance

of event type 𝐸 𝑗 within a time interval smaller or equal to a pre-

defined closeness threshold. Subsequently, the frequency of event

instances of type 𝐸 𝑗 after event instances of type 𝐸𝑖 satisfying the

temporal closeness condition, is computed and compared with the

frequency threshold. If the computed value is larger than the thresh-

old the dependency is considered, otherwise it is discarded. This

probabilistic approach provides flexibility to users in defining the de-

pendency relationship between event types and allows them to cus-

tomize these two parameters to identify the best values for their spe-

cific application (e.g., anomaly detection applications might benefit

from smaller frequency thresholds, as anomalies happen in a non-

regular and local manner). This effect is later evaluated in Section 7.

Extending. To extend the scope of the local models and further

consider cross-cluster dependencies, we apply our dependency iden-

tification method between ordered pairs of events from different

models. First, CCSM anonymizes event names, and then shares

the events logs with the core cluster. Note that event timestamps

are not anonymized as their exact values are needed by the core

cluster to establish further event dependencies. Unlike for commu-

nication models where PSI is used to identify common nodes in a

confidentiality-preserving manner, the same reasoning cannot be

applied since cross-cluster event dependencies have to be assessed

based on parameters, particularly occurrence frequency of ordered

pairs consisting of both edge’s events and core’s events. Therefore,

it is necessary that edge clusters share their entire anonymized

event logs with the core for a centralized processing. At the core

cluster, CCSM employs our dependency identification approach

described above for each ordered pair of event types, 𝐸𝑖 and 𝐸 𝑗 ,

belonging each to a different cluster (edge or core). Following this,

the core cluster returns to the edge the list of edge’s events that are

involved in cross-cluster dependencies along with indicating the

direction of dependencies (i.e., events that have a dependency with

at least one event on the core cluster, striped diagonally in Fig 6).

Pruning. This step is to remove non-essential nodes and edges

while ensuring that important events (i.e., that play a role in the

global model) are retained by pruning nodes that have no path from

or to any nodes identified during the extending step.

Anonymizing. The final step in the building local model phase is to
anonymize the local model before sending it for aggregation in the

core cluster. In this step, we utilize FF3 [42], a format-preserving

Figure 6: Example output of local builder module for Edge 1

encryption algorithm, to anonymize event names in the model, simi-

larly to howwe anonymize NF names for the communication model.

Example 3. Figure 6 depicts an example of building a local event

dependency model. Closeness and frequency threshold values are

2.5 s and 80%, respectively. First, in Fig. 6.a, CCSM constructs a local

model as a graph by finding dependencies based on event logs and

processing tables which are shown in the figure. For instance, there

is no edge from AMF-Handle Registration Request to AMF-Handle
Initial UE Message in the event dependency local model since its

frequency (50%) is lower than the frequency threshold, even though

it meets the closeness threshold. Then, in Fig. 6.b, the graph is

extended by tagging nodes which have cross-cluster dependency

(shown with striped patterns). For instance, AMF-Handle Initial UE
Message and AMF-Handle Registration Request are found to have

dependencies with the core cluster based on the closeness and fre-

quency they have with certain core events (not shown in this figure).

After that, in Fig. 6.c, the extended model is pruned by removing

irrelevant nodes and edges which are not essential for the analysis.

For instance, the nodeAMF-Handle Mobility Updating is pruned as it
cannot reach any node in the core, and cannot be reached from any

node in the core. Finally, in Fig. 6.d, event names are anonymized

by using FF3 in order to address confidentiality concerns. The AMF-
Handle Registration Request is anonymized (to 39b2...).

5.2 Building Global Event Dependency Model
We detail how CCSM constructs global event dependency models.

Constructing the GlobalModel. In this step, we integrate all local
models (edges’ and core’s) based on the cross-cluster dependencies

previously identified. Since cross-cluster event dependencies are

identified in the core only, a consequence of this is that edge clus-

ters are not aware of the core-side of their dependencies. Based on

the cross-cluster dependencies identified during the extending step,

the core is able to connect the prune version of local models with

its own model, effectively constructing a global model.

Pruning to Generate Edge-specific Views. Once the global

model is built, we apply our pruning method from each edge’s point

of view. For each edge, we create a restricted view of the global

model by removing any node that cannot be reached from (or cannot

reach) an internal node of the edge’s original local model. At the end

of this step, each edge receives only the necessary information to

improve their local security (i.e., each edge sees a specific view from

6
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global model). This approach to generate and send a specific view to

each edge addresses confidentiality concerns of individual clusters.

Figure 7: Example output of global builder module on core
Example 4. Figure 7 depicts an example of building a global event

dependency model from three local models (of Edge 1, Edge 2,

and the core). In Fig. 7.e, the model of Edge 1 (left), Edge 2 (top

right), and the core (middle) are aggregated. To that end, CCSM

uses the closeness and frequency of events to find cross-cluster

dependencies between edge and core nodes. From this step, it finds

three new dependencies between events of Edge 1 and the core:

(starting with) 39b2...→AUSF-HandleUeAuth..., 39b2... →UDM-
HandleGenerate ..., and 8bff...→UDM-HandleGenerate... (the cor-
responding event logs are not shown). Similarly, it finds one ad-

ditional event dependency between AUSF-HandleUeAuth... (in the

core) and 7a25... (in Edge 2). Then, in step Fig. 7.f, CCSM prunes

the global model from the point of view of Edge 1, by removing core

events that cannot be reached from (or cannot reach) any event from

Edge 1 (for instance, UDM-HandleGetAmData). As a result, the ob-
tained model view shows a potential event dependency from events

in Edge 1 (39b2... and 8bff...) to an event in Edge 2 (7a25...),
indicating a possible breach which might be examined by experts.

6 IMPLEMENTATION
This section details the implementation of CCSM. We deploy a

multi-cluster containerized 5G core network based on Towards5GS-

Helm [1], an open-source initiative based on Free5GC [27]. We

use Helm charts to automate this deployment on Kubernetes. We

use UERANSIM [30] to simulate the 5G Radio Access Network

and the UEs to generate events and traffic in the 5G core (e.g.,

registration and de-registration of multiple UEs). We implement

CCSM following the architecture depicted in Fig. 16 (shown

in Appendix E, due to space constraint), which also shows the

technologies employed to realize each component.

To build the communication models, we first collect the control

plane traffic on each cluster by deploying a DaemonSet of Pods

running TShark [14] to capture network traces on each node. We

enable the Kubernetes hostNetwork option and run the Pod as

privileged to collect the traffic on the host interface. A server on

the master node receives all traffic logs as .pcap files and extracts

each connection (i.e., source and destination IP). Then, we map

each source and destination IP address to its corresponding Kuber-

netes Pod by querying the Kubernetes API. If no mapping can be

found, we label the IP as external (i.e., one of the communicants

is outside of that specified cluster network). On the other hand, to

build the event dependency graphs, we first collect all logs using

the Kubernetes API (kubectl logs command) directly from the

master node and then extract the event logs. Then, we aggregate

and sort all event logs by timestamp (regardless of their node or

function of origin), and use a custom Python script to find the event

dependencies, as described in Section 5.

We use the Python library Pandas [67] to process the tabular

data and generate the initial communication or event dependency

models. Then, we first set up an open-source implementation of

the PSI algorithm based on [53] as a server on the core cluster.

For the communication graph, we identify common IP addresses

between each edge’s communication and the core’s NFs using a cus-

tom script. To prune local models, we employ the Pandas [67] and
Networkx [40] Python libraries. We anonymize IP addresses using

an implementation of Crypto-PAn [58]. On the other hand, other

attributes like the event names or NF names are anonymized with

FF3 [42], a NIST-approved format-preserving encryption algorithm.

On the core cluster, we develop custom scripts employing PSI, the

Networkx, and the Pandas Python libraries in a similar manner to

aggregate local models, build a global model, and finally send the

pruned global model to each edge cluster.

During CCSM implementation, we encounter several challenges

that are described in Appendix F, due to space constraint.

7 EVALUATION
This section details the experimental evaluation of CCSM.

7.1 Experimental Settings and Datasets
Experimental Settings. CCSM is deployed across two Kubernetes

clusters, each composed of one master node and two worker nodes.

Each node is a virtual machine with 4 vCPUs and 8GB memory,

running Ubuntu 20.04. We use VirtualBox as hypervisor, and create

an internal network for each cluster and an internal network for the

communication between clusters (backhaul). We deploy Kubernetes

v1.23.14 on top of Containerd v1.4.6 using Kubeadm. The physical
hardware of our cloud is composed of one server with 2x Intel(R)

Xeon(R) Gold 5120 CPU @ 2.20GHz and 128GB of DDR4-2933.

Datasets. We collect data from our testbed. To generate several

communication models, we use a sample communication model

built based on the collected logs (as shown in Fig. 2) as a seed to gen-

erate configurations with multiple clusters, each with different NF-

splitting between edge and core. For the event dependency models,

we use several UEs to trigger 5G procedures (e.g., registration and

mobility) in our multi-cluster 5G core, then we collect the Free5GC

application logs by running kubectl logs command for each Pod.

We collect 65,946 event logs of 61 unique events over two days in

a 5G environment composed of 10 edge and one core clusters.

7.2 Experimental Results
In the following, we present the evaluation results of CCSM.

Execution Time. First, we measure the execution time needed

by CCSM to perform each step under representative parameter

values. For those experiments, we only consider one core cluster

and one edge cluster. Fig. 8a shows the time required for building

communication models depending on the size of the local models

(i.e., the sum of edges and vertices: |V| + |E|), ranging from 400 to

3600 (before pruning). Overall, the execution time of CCSM includ-

ing local model building and global model building appears to grow

linearly. Some specific steps (e.g., pruning) show negligible impact

7



ACM CODASPY ’24, June 19–21, 2024, Porto, Portugal

400 1200 2000 2800 3600
Size of local model (|V| + |E|)

0

2

4

6

8

Ex
ec

ut
io

n 
tim

e 
(s

)

0.0

0.1

Construction
Extension
Pruning

Anonymization
Global model construction
Global model pruning

(a) Time to build communication models as
a function of the size of local models

6000 12000 18000 24000 30000 36000
Number of event instances

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of event types = 60

Construction
Extension
Pruning

Anonymization
Global model construction
Global model pruning

(b) Time to build event dependency models
as a function of the total number of events

20 40 60 80 100
Number of event types

0

10

20

30

40

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of event instances = 10000

Construction
Extension
Pruning

Anonymization
Global model construction
Global model pruning

(c) Time to build event dependency models
as a function of the number of unique events

Figure 8: Evaluation of execution time

by the size of the local models, while others (e.g., anonymization,

performed using a third party tool) are more dependent on that

size. Overall, the execution time of all steps grows almost linearly.

Fig. 8b and 8c show the total time required by CCSM to build

both local and global event dependency models while varying the

number of event instances and event types, respectively. In the

case of event dependency models, as the size of the model is not

representative of different types of clusters (i.e., a large cluster

can generate very few events, or a small cluster can generate a

vast amount of events), we instead study the impact of two other

parameters specific to the event dependency models, namely, the

number of event instances and the number of unique event types.

Fig. 8b presents the execution time of each step for event instances

ranging from 6,000 to 36,000, while the number of unique event

type is fixed to 60 (which is representative of the number of event

types collected in our testbed for a common scenario). It can be

observed that the trend is almost linear, and the local model exten-

sion step is the most time-consuming as it involves searching for

cross-cluster dependencies between the edge and core. Additionally,

Fig. 8c shows the effect of increasing the number of unique event

types, while the number of event instances is fixed to 10,000. The

execution time of CCSM appears quadratic, ranging from around 8

s to almost 40 s, when the number of event types grows from 20 to

100. This is expected since each new unique event type might form

dependency with all the existing event types, leading to a quadratic

growth in the execution time.

Since our approach is offline in nature (i.e., the global communica-

tion and event dependency models are only to be built periodically),

we conclude that using CCSM in a real-world environment is ef-

ficient (most execution times are in seconds) and scalable (linear or

quadratic growth). Also, CCSM is by design scalable to more edge

clusters since the steps for building local models can be executed in

parallel between those edge clusters, while our experiences show

that the execution time for building global models only shows a

negligible increase in the number of edge clusters, thus ensuring

our approach is practical even for large edge-core environments.

Effectiveness of Pruning. In this set of experiments, we evaluate

the effectiveness of pruning techniques utilized to remove the irrele-

vant nodes and edges. To that end, wemeasure and compare the size

of models before and after pruning. Fig. 9 depicts the size of pruned

models as a percentage of the size of original models vs. the local

models’ beta index [19] (the beta index is a measure of a graph’s con-

nectivity and is calculated as the ratio between the number of edges

(|E|) and the number of nodes (|V|) in the graph). Fig. 9a depicts our

results for communication model. As beta indices increase from 0.7

to 2.5, the effectiveness of pruning diminishes exponentially. For

a low beta index value, the local models are so sparse that a signif-

icant number of nodes and edges could be irrelevant to the global

model and can thus be pruned. Therefore, the size of the pruned

models averages only 50% of their original sizes when beta index is
less than 1. On the other hand, as the beta index increases, most of

the nodes could become connected so pruning is less effective. It is

to be noted that this is not a limitation of our pruning method, but

rather an expected consequence of the changing models. As a gen-

eral guideline, one can skip the pruning steps when dealing with a

highly connected model (e.g., beta index > 2). On the other hand, as

shown in Fig. 9b, the results for event dependency models show no

clear dependency on the level of connectivity of the models, while

our approach can prune between 10% and 60% of the local model.

The lack of a trend can be explained by the fact that event depen-

dencies are determined by the types of events and thus are less

regular than communications (e.g., as demonstrated in Figure 2).
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Figure 9: Evaluation of pruning effectiveness

Performance of Event Dependency Models. In this set of exper-

iments, we measure the accuracy of our event dependency models.

Because event dependency models are built in a non-deterministic

manner (i.e., based on temporal closeness and frequency of observa-

tion), we assess the quality of our method by comparing our event

dependency models to the ground truth event dependency in a

5G core environment (i.e., following the 3GPP standard [22]). Our

goal is to measure with what accuracy CCSM can reconstruct the

event dependencies across multiple clusters using closeness and fre-

quency as a way to extend and aggregate local models (as detailed

in Section 5). Fig. 10 shows the accuracy, precision, recall, and F1

score of global models built by CCSM under different closeness and

frequency threshold values, where the measurements are for cross-

cluster event dependencies identified by CCSM. We apply different

metrics since these may be important for different applications.
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Figure 10: Performance of CCSM event dependency models
for various closeness 𝑇𝑐 and frequency 𝑇𝑓 thresholds

The results show that the overall accuracy of CCSM reaches a

peak at slightly over 70% with a frequency threshold of 50% and

a closeness threshold of 500 ms (i.e., two events are considered

dependent if and only if they happen within less than 500 ms at

least 50% of the time). Decreasing the frequency threshold overall

results in a lower precision (i.e., more false positive as more events

would be considered as dependent) but higher recall (i.e., less false

negatives). Conversely, increasing the frequency threshold results

in higher precision of our approach, but lower recall. We observe

similar behaviour when varying the closeness threshold. Increasing

it past 1,000 ms significantly drops the accuracy of our solution

since Free5GC procedures (e.g., UE registration/de-registration)

typically happen within one second according to our observations.

Considering lower closeness thresholds generally increases the pre-

cision but decreases the recall, and vice versa. We conclude that

optimal closeness and frequency thresholds may be identified based

on the specific needs of different security applications. We further

discuss the choice of such threshold values in Section 9.

Event Prediction Evaluation.We further extend the evaluation

of event dependency models to the application of predicting fu-

ture events [37, 44]. Specifically, we fix the frequency threshold of

our solution at 70%, and evaluate the performance of our learned

models for predicting events at depth=1 (i.e., the immediate next

event), depth=4 (i.e, the next four events), depth=10, and without a

prediction depth limit. Fig. 11 shows that the peak accuracy of 99%

is reached when predicting the immediate next event with a low

closeness threshold (10 ms). Under similar conditions, our solution

correctly predicts the four next events with 96% accuracy, 10 next

events with 88% accuracy, and finally all future events with 68%

accuracy (similarly to Fig. 10). We can observe that CCSM has better

precision at predicting events to unlimited depths (i.e., events that

happen after an arbitrary number of other events) at the cost of

recall. Those results again emphasize the importance of customiz-

ing the threshold values for specific use cases. For instance, users

interested in predicting immediate next events with high accuracy

could use a closeness threshold between 10 ms and 100 ms, whereas

predicting all future events can use a threshold higher than 1,000 ms.
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Figure 11: Performance of event prediction using CCSM com-
pared to ground truth for various prediction depths (𝑇𝑓 = 70%)

8 USE CASES
This section describes three cross-cluster use cases of CCSM.

Use Case 1: Cross-Cluster Security Verification. This first use
case is to verify if an application deployed across multiple clusters

complies with security policies [33]. Well-known examples of such

security policies are network isolation [74], communication pat-

tern [17, 64], and/or event-based properties [33, 37]. The top part

of Fig. 12 illustrates an example of two 5G network slices deployed

across edge and core clusters whose isolation is being compromised

by a security attack [26]. For instance, the attacker first exploits

a vulnerability (e.g., CVE-2021-41794) to gain unauthorized initial

access to the UPF2 within the edge cluster and then performs a

lateral movement (e.g., container escape using CVE-2022-0492). The

attacker eventually breaches the boundaries between clusters due

to compromised network slice isolation, resulting in a new network

communication highlighted by a red arrow between UPF2 in the

edge cluster and AUSF in the core cluster. In this scenario, the end-

to-end isolation between 5G network slices needs to be verified

across the edge and core clusters. The local communication models

are shown on both sides of the deployed network. However, those

local models by themselves do not allow to detect the breach. By

constructing the global model (shown at the bottom of the figure)

from the available logs, CCSM allows the identification of such

unwanted communication between the two clusters (network iso-

lation) or other anomalous communication patterns. Therein, the

unexpected communication between the UPF2 at the edge cluster

and the AUSF at the core cluster will be identifiable by the added

arrow in red between those two NFs.

Use Case 2: Cross-Cluster Security Impact Prediction. The sec-
ond use case refers to predicting the potential impact of a planned

update, performed locally in some parts of the system (software or

hardware), on the security of the whole multi-cluster system.
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Figure 12: Use Case 1 - Cross-cluster security verification

Fig. 13 shows how CCSM can help in predicting the security

impact due to a configuration change to one part of the system

causing perturbation to the whole system using an example inspired

from recent telecom operators outage [24, 49] where an update due

to maintenance caused a failure in network routing. The middle

part of Fig. 13 shows the deployed network functions (NFs) in the

edges and the core, where only the virtual router NF (highlighted

in red) has to be updated. The right part of the figure shows the

local communication models for the edges (identical for all edges)

and the core before the update is performed. By comparing the

global model before the update (not shown here) and the global

model (shown in the left side) after the update (performed in a test

environment) generated by CCSM, we can see that the model cap-

tures the filtering/routing disruptions caused by the update (shown

as dashed red arrows denoting the absence of communication be-

tween the impacted NFs). Particularly, even though the routing

functionality is maintained among NFs inside the core, this update

has broken the communications between the AUSF in the core at

one side and the AMFs in edges at the other side. This is due to the

fact that the AMF requires communicating with the AUSF, which

has become unreachable because of the update. In summary, as the

global model obtained by CCSM (as an impact of those updates)

diverges significantly from its prior state, our solution empowers

administrators to extend existing forecasting and change impact

analysis techniques to multiple Kubernetes clusters.

Figure 13: Use Case 2 - Cross-cluster impact prediction

Use Case 3: Cross-Cluster Anomaly/Attack Detection. Our
third use case is to detect anomalies across multiple clusters that

would otherwise go undetected. Fig. 14 depicts an example scenario

involving a central cloud and two private 5G networks [57]. Specifi-

cally, the private cloud provides connectivity to on-site users, while

Figure 14: Use Case 3 - Cross-cluster anomaly detection

the central cloud (e.g., mobile network operator) provides roaming

for private cloud users off-site. Following the authentication proce-

dure in the private cloud, the authentication function (AUSF) of each

private cloud transmits cryptographic keys to themanagement func-

tion (AMF) at the public cloud in order to secure the UE’s commu-

nications while roaming. These extended authentication protocol

(EAP)-based procedures are detailed in the 3GPP specifications [23]

and can be represented as a reference global model depicting the ex-

pected behavior (shown at the top right corner). Similar to existing

local anomaly detectionmodels [17, 64], CCSM can be used to detect

global, cross-cluster anomalies (e.g., a potential attack on the core

from a user connected to an edge). For example, the red edges show

that the AMF-UpdateKeys and UDR-QuerySMFRegList events are

unexpectedly related to events in the second private cloud, poten-

tially indicating a leak of data from the public 5G network to the pri-

vate 5G network 2 (e.g., cryptographic keys). Although event depen-

dency models generated by CCSM are built in a non-deterministic

manner and might result in inaccuracies (see Section 7), they re-

main well-suited for anomaly detection tasks where the main goal

is to raise alerts for further examination by security analysts.

9 DISCUSSION
Adapting CCSM to Other Orchestrators. While CCSM is imple-

mented for and integrated with Kubernetes, our methodology is

platform-agnostic. In particular, CCSM can be ported to other con-

tainer orchestrators (e.g., Docker Swarm [18] and OpenShift [51])

with minimal engineering effort, as it only requires access to net-

work logs, Pod names and application logs in each cluster. In partic-

ular, Docker Swarm’s “Swarms” and OpenShift’s “Clusters” can be

used to deploy containers in different environments. IP addresses

and network logs can be collected similarly using Wireshark [14],

and application logs can be accessed using the orchestrators’ re-

spective command line interface.

Model Completeness and Correctness. CCSM ’s communica-

tion models depend on the correctness and the completeness of the

collected network traces. Our model can be further enriched with

external information (e.g., NAT rules, VPN traces) to tackle inaccu-

racies on those traces (e.g., caused by address translation systems

such as VPN, NAT, and proxies [4, 35]). The correctness of our event

dependency models depends on the precision of the log timestamps

and quality of the time synchronisation in the cluster, and choosing

the right thresholds can greatly improve the accuracy of constructed

models (Section 7). Finally, both models can be updated periodically
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to reflect changing communication patterns and/or changes in the

architectures (e.g., addition of an application, deletion of a network

connection) which could affect the accuracy of those models; which

can be performed in a relatively short time (see Fig. 8).

Choosing a Threshold Value. Our evaluation results (Section 7)

show how the choices of threshold values have a consequence

on the size and the accuracy of generated models, and should be

adapted depending on the use case. Overall, large closeness thresh-

olds and small frequency thresholds result in larger models. When

choosing threshold values, users should also take into account

the application and its requirements. For instance, predictive ap-

proaches (e.g., event prediction [37] or security impact prediction

presented in Use Case 2) might benefit more from a larger closeness

threshold and a higher recall (i.e., less false negatives) as the in-

creased rate of false positives (i.e., wrong predictions that only add

a slight delay) would be acceptable. On the other hand, anomaly

detection applications (e.g., Use Case 3) might benefit from a higher

precision (i.e., less false positives) to reduce alert fatigue. This corre-

sponds to a smaller closeness and larger frequency to solely capture

events that appear frequently together at close time intervals.

10 RELATEDWORK
There exist many solutions addressing different aspects of cloud

and 5G security including security verification, attack detection,

and impact prediction. The authors in [17] detect security breaches

in software-defined networks based on network topology and for-

warding rule. SFC-Checker [64] validates service function chaining

correctness based on network topology, ensuring correct forward-

ing behavior. These solutions are not designed for a multi-cluster

environment with confidentiality concerns, and our solution en-

ables their applicability to such environments. In [74], the authors

study different approaches for detecting network service anomalies

in NFV environments. Our solution can potentially support the de-

tection of the same topology anomalies, but additionally the anom-

alies happening over multiple clusters. There exist several proactive

security compliance verification works (e.g., [6, 37, 43, 44, 52]) for

OpenStack clouds. For instance, Weatherman [6] and Congress [52]

verify security policies in clouds using graph-based and Datalog-

based models, respectively. LeaPS [44] and Proactivizer [45] are

proactive security verification solutions for cloud environments

based on event dependency models, while ProSPEC [37] adopts a

similar approach but works for container environments. WARP [3]

applies the dependency model to proactively mitigate attacks in

Kubernetes clusters. In [73], the authors propose an advanced ap-

proach to mine correlated events, which can increase the reliability

of event dependency models. The authors in [25] propose a proba-

bilistic approach to match and discover correlated events, while the

authors in [29, 34] follow a frequency-based metric to assess the

dependency of events. While all those works are limited to events

and dependency models in a single cloud or cluster, our solution

can enable their extension to multi-cluster environments.

There exist solutions for distributed and collaborative security

applications. For instance, in [12], the authors propose a frame-

work to predict advanced persistent threats (APT) in a distributed

5G environment while ensuring confidentiality. In contrast to such

application-specific solutions, our work provides a methodology for

building global models to enable different security applications. Fed-

erated learning (FL) is another popular approach to collaboratively

train a global machine learning model, which has found many secu-

rity applications recently. For instance, the authors in [65] propose

a FL approach to detect network attacks in 5G distributed systems

using packet traffic analysis. Mothukuri et al. [47] introduce a FL-

based anomaly detection approach, enhancing IoT security through

collaborative learning techniques. Su et al. [60] apply edge-based

FL in a smart grid environment to share the private energy data of

users with minimum communication overhead while ensuring data

confidentiality. Rasha et al. [55] study the application of FL in smart

cities (e.g., transportation, healthcare, and communication) for im-

proving security and confidentiality. Although FL might train a

global machine learning model without sharing user data, it usually

requires multiple iterations which may impact the network perfor-

mance, and it might also suffer from distributed data and model

poisoning [59]. While the high-level objectives of our work are

similar to FL (i.e., building global models while preserving confiden-

tiality), the main difference lies in their inputs and outputs, i.e., FL

is designed to build machine learning (ML) models from raw data,

whereas our solution aims to piece together existing local models

(which may or may not have been constructed using ML) into a

global model (which again may not be an ML model in nature).

11 CONCLUSION
In this paper, we presented CCSM that builds cross-cluster secu-

rity models to enable various security analyses, while preserving

confidentiality for each cluster. We instantiated our solution based

on both the communication model and event dependency model of

edge-core environments. We showed the application of our solution

for different use cases. We implemented and integrated our solu-

tion into a multi-cluster 5G core testbed. Our experimental results

demonstrate the performance of CCSM for various use cases. How-

ever, CCSM currently has a few limitations which will be addressed

in our future work. For instance, the potential of our method to

generalize beyond those two models (i.e., communication and event

dependency) will be explored in the future. Also, we will extend our

models by adding more details, e.g., the number of connections and

amount of data exchanged over a communication link, or the prob-

abilities of event dependencies, to cover more security applications.
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A EXAMPLE OF EDGE-CORE ARCHITECTURE
The Mobile Edge Computing (MEC) standard [36, 56] suggests plac-

ing the User Plane Function (UPF) at the edge and the control plane

network functions (e.g., Access and Mobility Management Function

(AMF) and SessionManagement Function (SMF)) on the core, which

can improve the response time and performance. Fig. 15 depicts an

edge-core architecture while deploying AMF and SMF on the edge

next to the UPF [15] (as depicted in Fig. 15), while the core provides

authentication, authorization, and other control plane functional-

ities. Such an approach can considerably reduce signaling between

the edge and core.

Figure 15: An example of 5G edge-core architecture [15]

B EXAMPLE
OF FORMAT-PRESERVING ENCRYPTION

Table 1 shows several examples of IP addresses anonymized using

Crypto-PAn in a prefix-preserving manner. For example, as first and

second IPs in the table belong to the same subnet, after anonymiza-

tion their corresponding anonymized IP addresses will belong to

the same subnet again. In the same way, as the third one has 16 bits

in common with two previous ones, after anonymization the cor-

responding anonymized IP address will have the same first 16 bits.

Table 1: An example of format-preserving encryption using
Crypto-PAn

Original IP IP anonymized by Crypto-PAn
192.168.1.13 223.87.156.185
192.168.1.14 223.87.156.187
192.168.5.23 223.87.155.187
192.130.3.54 223.125.128.117
10.10.10.25 29.21.233.153

C ALGORITHM
FOR BUILDING LOCAL MODELS

Algorithm 1 shows our pseudo-code for building local models. There

are four functions for the four steps of the Building local models
phase. First, the Constructing local model function (Line 4) parses

a connections.csv file and converts its content in a graph. Then,

this graph is processed by the second function Extending local model
(Line 14) to extract external connections and find common connec-

tions with the core cluster (or with other edges, for the core). To

do so, the core and edges use the PSI algorithm to find common

connections without endangering their own confidentiality. Third,

the graph is processed by the Pruning local model function (Line 31)

to check the reachability of nodes and edges between the edges

and the core cluster. This function keeps those that are reachable

and remove others. Finally, the Anonymization local model function
(Line 47) applies anonymization techniques (e.g., PSI and FF3) to

prepare the local model for aggregation (in the core cluster) while

preserving confidentiality.

Algorithm 1 Building Local Model

1: Input: Collected data𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠.𝑐𝑠𝑣 (SRC(IP, Name),DST(IP, Name))

2: Output: Local model𝐺

3:

4: function Constructing_local_model(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠.𝑐𝑠𝑣)

5: //Build local model from input file (Deterministic)
6: Temp Variable LocalModel(𝐺 = (𝐸,𝑉 ))
7: for each (SRC, DST) in𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛.𝑐𝑠𝑣 do
8: 𝐺.𝑉 .add(SRC)

9: 𝐺.𝑉 .add(DST)

10: 𝐺.𝐸.add(SRC, DST)

11: Return𝐺

12:

13: function Extending_local_model(𝐺 )

14: for edge e in𝐺.𝐸 do
15: if e is an external connection then
16: ExternalEdges.add(e)

17: //Find common edges between edge cluster and core
18: CommonEdges = PSI(ExternalEdges)

19: for e in CommonEdges do
20: if SRC is external IP then
21: 𝐺.𝑉 (SRC).isCommon = 1

22: else
23: 𝐺.𝑉 (DST).isCommon = 1

24: Return𝐺

25:

26: function Pruning_local_model(𝐺 )

27: Temp Variable LocalModel(𝐺
′
= (𝐸,𝑉 ))

28: for node 𝑛 in𝐺.𝑉 do
29: if 𝑛.isCommon == 1 then
30: 𝐺

′
.𝑉 .add(ancestors(n))

31: 𝐺
′
.𝑉 .add(descendants(n))

32: for edge e in𝐺.𝐸 do
33: if e.SRC is in𝐺

′
.𝑉 and e.DST is in𝐺

′
.𝑉 then

34: 𝐺
′
.𝐸.add(e)

35: Return𝐺
′

36:

37: function Anonymizing_local_model(𝐺 )

38: for node n in𝐺.𝑉 do
39: n.SRC.IP = Crypto-PAn(n.SRC.IP)

40: n.DST.IP = Crypto-PAn(n.DST.IP)

41: n.SRC.Name = FF3(n.SRC.Name)

42: n.DST.Name = FF3(n.DST.Name)

43: Return𝐺

D ALGORITHM
FOR BUILDING GLOBAL MODEL

Algorithm 2 details the process of constructing the global model.

First, the Constructing global model function (Line 4) merges all local

models depending on their connections with the core. To do so, it

constructs the set intersection between each edge’s local model and

its own local model using the PSI algorithm. Progressively, local

models are merged with the core’s local model to form a global

model. Then, CCSM shares a version of the global model to each

edge, containing only the information related to that edge. To that

end, the Pruning global model for edge function (Line 21) removes

all edges and nodes that are not reachable (or cannot reach) from

(to) any node in that specific edge cluster.

E IMPLEMENTATION ARCHITECTURE
Figure 16 illustrates the architecture of CCSM that contains two ma-

jor modules: local model bulder and global model builder. CCSM is

implemented in a distributed manner where the local model builder
13
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Algorithm 2 Building Global Model

1: Input: 𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑠 , Edge number 𝑗
2: Output: Global model𝐺𝑖 pruned for Edge number 𝑗

3:

4: function Constructing_global_model(𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑠)

5: Temp Variable GlobalModel(𝐺 = (𝐸,𝑉 ))
6: for Graph𝐺𝑖 in 𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑠 do
7: for edge e in𝐺

′
𝑖 .𝐸 do

8: if e.SRC.isCommom == 1 or e.DST.isCommon == 1 then
9: if verify_by_PSI_result(e) then
10: Continue

11: else
12: Alarm for anomaly

13: G.merge(𝐺
′
𝑖 )

14: Return𝐺

15:

16: function Pruning_global_model_for_edge(𝐺 , 𝑗 )

17: Temp Variable GlobalModel(𝐺
′
= (𝐸,𝑉 ))

18: for node 𝑛 in𝐺.𝑉 do
19: if 𝑛 is a node from local model of edge 𝑗 then
20: 𝐺

′
.𝑉 .add(ancestors(𝑛))

21: 𝐺
′
.𝑉 .add(descendants(𝑛))

22: for Edge 𝑒 in𝐺.𝐸 do
23: if 𝑒 .SRC is in𝐺

′
.𝑉 and 𝑒 .DST is in𝐺

′
.𝑉 then

24: 𝐺
′
.𝐸.add(𝑒)

25: Return𝐺
′

module instances are deployed on edges and core, and the global
model builder module is deployed as a centralized manager on the

core cluster.

Figure 16: CCSM implementation architecture

F IMPLEMENTATION CHALLENGES
Timestamp Precision. To determine the relationships and the

order between events, we rely on the timestamp measurements

output by each application’s logging function. However, using the

default logs of Free5GC led to several inconsistencies as the default

unit of timestamps precision is only at the second scale. Although

this is not a challenge within a single NF’s logs (as logs are written

sequentially to standard output, in the correct order), reliably deter-

mining the order of events from different NFs is made impossible

when all such events have the same timestamp. This behaviour is

frequently seen since events in the 5G core may happen at a rapid

pace (e.g., a complete UE registration can take less than one second

and involve a dozen events). Free5GC does not offer runtime options

to modify and increase the precision of timestamps in their logs,

and therefore, to address such issues, we modify the source code

of the NF applications (in Go) to instead print logs at the nanosec-

ond scale (i.e., changing TimestampFormat from Time.RFC3339 to

Time.RFC3339Nano). This change has been officially merged into

the vendor’s official code base [28].

Multi-cluster 5G Core on Kubernetes. We implement CCSM in

a realistic edge-core environment composed of multiple Kubernetes

clusters. Similarly to a real MEC deployment [48], we connect those

different clusters with a backhaul network and the corresponding

network routing rules. To allow services and NFs from different

clusters to communicate, we leverage Submariner [61] to connect

overlay networks of different Kubernetes clusters. In particular, we

deploy a service broker on the core cluster, a gateway on each clus-

ter’s master node, and a Submariner tunnel between each edge’s

gateway and the core cluster’s gateway. For security reasons, we

deploy our clusters in an internal network, using only private in-

terfaces. However, another challenge arises as Submariner requires

public interfaces (specifically, the interface for the default route) to

automatically discover the gateway. To solve this issue, we tempo-

rary make Submariner use our private interfaces by changing the

default route during the time of the discovery only. To avoid addi-

tional complexity, we ensure that Pods and Services CIDR do not

overlap between each clusters. Additionally, we set up Free5GC to

work across ourmulti-cluster Kubernetes environment by exporting

all Kubernetes services involved in cross-cluster communications

depending on the edge-core configuration user.
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