
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

ACE-WARP: A Cost-Effective Approach to
Proactive and Non-disruptive Incident Response in

Kubernetes Clusters
Sima Bagheri∗, Hugo Kermabon-Bobinnec∗, Mohammad Ekramul Kabir∗, Suryadipta Majumdar∗,

Lingyu Wang∗, Yosr Jarraya§, Boubakr Nour§, Makan Pourzandi§
∗CIISE, Concordia University, Montreal, Canada. Emails: {sima.bagheri, hugo.kermabonbobinnec,

mohammad.kabir, suryadipta.majumdar, lingyu.wang}@concordia.ca
§Ericsson Security Research, Canada. Emails: {yosr.jarraya, boubakr.nour, makan.pourzandi}@ericsson.com

Abstract—A large-scale cluster of containers managed with
an orchestrator like Kubernetes are behind many cloud-native
applications today. However, the weaker isolation provided by
containers means attackers can potentially exploit a vulnerable
container and then escape its isolation to cause more severe dam-
ages to the underlying infrastructure and its hosted applications.
Defending against such an attack using existing attack detection
solutions can be challenging. Due to the well known high false
positive rate of such solutions, taking aggressive actions upon
every alert can lead to unacceptable service disruption. On the
other hand, waiting for security administrators to perform in-
depth analysis and validation could render the mitigation too late
to prevent irreversible damages. In this paper, we propose ACE-
WARP, a cost-effective proactive and non-disruptive incident
response to address such security challenges for Kubernetes
clusters. First, our approach is proactive in the sense that it
performs mitigation based on predicted (instead of real) attacks,
which prevents irreversible damages. Second, our approach is
also non-disruptive since the mitigation is achieved through live
migration of containers, which causes no service disruption even
in the case of false positives. Finally, to realize the full potential of
this approach in containers migration, we formulate the inherent
trade-off between security and cost (delay) as a multi-objective
optimization problem. Our evaluation results show that ACE-
WARP can successfully mitigate up to 81% of the attacks, and our
optimization algorithm achieves up to 30% more threat reduction
and 7% less delay while being 37 times faster compared to a
standard optimization solution.

Index Terms—Cloud-native, Incident Response, Proactive se-
curity, Containers, Kubernetes, Attack Mitigation, Optimization,
Advanced Persistent Threats (APT)

I. INTRODUCTION

CONTAINERIZATION is an increasingly popular choice
for deploying large-scale cloud-native applications due

to its inherent efficiency, agility, and flexibility. A container
orchestrator such as Kubernetes (a widely adopted container
orchestration platform [1]) makes it easy to deploy and manage
a large-scale Kubernetes cluster. However, it is well known
that, compared to full-fledged virtual machines, containers
provide weaker isolation between the application and the
underlying host [2]. Moreover, popular container images are
shown to be buggy with vulnerabilities [3], and even the cluster
orchestrator itself may contain vulnerabilities or misconfigu-
rations (e.g., the Kubernetes privilege escalation vulnerability
showcased at Black Hat USA 2022 [4]). Such weaknesses

may render Kubernetes clusters an attractive target to attackers,
who can exploit a vulnerable container for initial accesses, and
then escape the container to cause more severe damages to the
underlying infrastructure and other containers as well as the
applications they host.

There already exist attack prevention solutions for contain-
ers and Kubernetes, such as the Open Policy Agent (OPA)
and Gatekeeper [5] combination for runtime security policy
enforcement, as well as the Seccomp (SECure COMPuting)
filter [6], which is for preventing containers from accessing
certain host-level resources through blocking system calls. The
Seccomp filters are also leveraged in existing works [7], [8],
[9] to block system calls that are not normally used by the
applications. Nonetheless, those preventive solutions can only
reduce the general attack surface of containers to some extent,
and cannot prevent all attacks. Therefore, attack detection
solutions are still necessary. To that end, Falco [10] provides a
popular open source solution for detecting attacks on both the
containers and the infrastructure, either with the default rules
or by developing custom rules for specific attacks. Although
such detection solutions can enable a security administrator to
take notice and keep track of ongoing attacks, these solutions
do not provide a direct way to stop such attacks.

Unlike attack prevention and detection, which have both
received much attention, automated mitigation of detected
attacks in Kubernetes clusters has received less attention (a
detailed review of related works will be given in Section I-A).
Attack mitigation in practice still largely depends on the in-
tervention of security administrators, who will first investigate
the alerts reported by a detection solution such as Falco [10],
and then take corresponding mitigation actions to stop or slow
down the attack progress. However, such a traditional approach
to attack mitigation may face several major challenges in
the specific context of defending Kubernetes clusters (we
will further illustrate those limitations through an example
in section II-B).
- The manual attack mitigation efforts from an admin can

hardly be scalable enough for a large Kubernetes cluster.
Such efforts are usually tedious for an admin, limited by
his/her knowledge and skills, and prone to human errors.
These can be exacerbated when managing a large Kuber-
netes cluster, since many alerts reported by a detection

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

solution (e.g., Falco) can easily cause the admin to develop
alert fatigue and subsequently miss the actual attack events.

- Moreover, in making such a mitigation decision, an admin
may likely face a dilemma. First, due to the well known
high false positive rate of most attack detection solutions,
the administrator may be aware that taking an aggressive
action, such as shutting down the victim container, could
lead to unacceptable service disruption.

- On the other hand, the administrator knows the importance
of a timely mitigation action, since performing in-depth
analysis and validation of the reported alerts may take
too long, and render the subsequent mitigation too late to
prevent irreversible damages, such as potential large-scale
data leakage or denial of service (DoS).

- Finally, knowing that any mitigation action may unavoidably
incur a cost (e.g., delay to services), the admin must also
strive to balance security against other factors through a cost-
effective strategy towards attack mitigation. Moreover, the
multi-tenant nature of cloud and its diverse applications both
imply that the tenants may have very different requirements
in terms of security and costs (e.g., an autonomous vehicle
application may regard negligible delay as its top priority,
while a co-located smart parking application may value
security more than delay). It would be highly challenging
for the administrator of a Kubernetes cluster to cater to
those different requirements, all through manually adjusting
his/her mitigation actions.

In this paper, we propose a novel approach named ACE-
WARP to address the aforementioned limitations. First, we
provide a fully automated solution for performing attack
mitigation in Kubernetes clusters. This helps avoid various
limitations of manual efforts and makes attack mitigation
scalable enough for large-scale applications. Second, upon
a detected attack, we perform proactive mitigation actions
to prevent the attacker from reaching other co-located or
connected containers. Taking such early mitigation actions
prior to attack propagation can limit the scope of attack
damages and prevent irreversible losses. Third, we realize
the proactive mitigation through a non-disruptive type of
mitigation actions, i.e., live migration of Kubernetes Pods.
Such mitigation actions can avoid service disruption in case
the detected attack turns out to be a false alarm later on, since
live migration is transparent to tenants, and is already being
routinely performed in Kubernetes clusters for other purposes
(e.g., load balancing or maintenance). Fourth, we provide cost-
effective mitigation plans through multi-objective optimization.
This allows us to maximize the amount of threat reduction
achieved by our mitigation actions, while minimizing their
potential delay and overhead. Finally, we provide customized
mitigation to different groups of logically separated containers.
This enables our solution to tailor the attack mitigation to
the different requirements of tenants in terms of the level of
security and its associated cost, as typically specified in their
Service Level Agreements (SLAs).

The main contributions of this paper are as follows:

• We build the first large-scale Kubernetes attack dataset with
231k Falco alerts based on real-world APT attacks simulated

in a controlled environment [11].
• Using this Falco alerts dataset, we develop an attack pre-

diction model to learn attackers’ tactics and strategies in the
form of MITRE ATT&CK framework [12]. This prediction
model is learned offline and applied at runtime for attack
prediction.

• We develop a series of techniques to predict the attacker’s
probable next moves after an initial attack is detected, iden-
tify the Pods (i.e., smallest deployable units of Kubernetes)
that could become the next targets of attack propagation,
evaluate the risk of those Pods to decide when mitigation
should be triggered, and finally perform non-disruptive at-
tack mitigation through migrating the Pods at risk according
to an optimal migration plan.

• To derive such a cost-effective mitigation plan, we formulate
the migration options and corresponding costs as a multi-
objective optimization problem, prove its NP-hardness, and
develop an efficient heuristic algorithm to find solutions that
can maximize threat reduction with minimal cost.

• We also leverage network slicing [13] to apply different
mitigation plans to different slices (groups of logically
separated containers), such that our attack mitigation can
be customized for each tenant to satisfy its unique security
requirement and cost constraint.

• We implement our approach based on a Kubernetes cluster
deployed with Falco. We evaluate the effectiveness and
performance of our solution through experiments. Our evalu-
ation results show that ACE-WARP can mitigate up to 81%
of the attacks, and our heuristic algorithm achieves up to
30% more threat reduction and 7% less delay while being
37 times faster compared to a standard optimization solution.

A preliminary version of this paper [14] introduces the
basic idea of non-disruptive proactive attack mitigation in
Kubernetes clusters, with the main limitation of lacking a
systematic optimization approach. In this paper, we signifi-
cantly extend our previous work to realize its full potential in
achieving cost-effective and customizable attack mitigation.
Specifically, our major extensions are as follows: (i) We
formulate a new multi-objective optimization problem of Pods
placement to formally model the trade-off between security
and delay (Section IV-A). (ii) We design and implement a new
heuristic algorithm to solve the optimization problem more
efficiently (Section V-B1). (iii) We investigate and adopt new
state-of-the-art migration mechanisms for better performance
(Section V-B3). (iv) We propose a new method for leveraging
network slicing to customize attack mitigation based on mixed
tenant requirements (Section V-B2). (v) Finally, we provide
a new guideline for adapting our solution to other platforms
(Section VI-D) and perform new experiments to evaluate the
effectiveness, performance, and customizability (Section VII).

The rest of this paper is organized as follows. We provide
related work in Section I-A. Section II provides preliminaries.
Section III gives an overview of ACE-WARP. Sections IV
and V detail the offline and runtime phases, respectively.
Sections VI and VII present the implementation and our
evaluation results, respectively. Finally, conclusion, discussion,
and future work are discussed in Section VIII.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

A. Related Work

ACE-WARP lies at the intersection of attack detection,
attack investigation and provenance, attack mitigation, proac-
tive security approaches, and resource placement optimization.
Therefore, this section reviews and compares ACE-WARP
to related works in those areas. First, Table I presents a
comparison of ACE-WARP with existing solutions in terms of
their methods, environments, tenant adjustability, and different
features (proactiveness, model learning, leveraging the MITRE
ATT&CK framework, attack coverage, mitigation, and being
non-disruptive). The comparison shows ACE-WARP covers
all the aforementioned features, operates in the Kubernetes
environment, and is adjustable with the tenants’ requirements.

TABLE I: Comparing ACE-WARP with existing solutions.

Ref. Method Features
E

nv
ir

on
m

en
t

Te
na

nt
A

dj
us

ta
bi

lit
y

Pr
oa

ct
iv

e
M

od
el

L
ea

rn
in

g
M

IT
R

E
AT

T
&

C
K

A
tt

ac
k

C
ov

er
ag

e

M
iti

ga
tio

n

N
on

-d
is

ru
pt

iv
e

PROLEMus [15] MAC
protocol − H# − N/A

Cognitive
Radio

Network
(CRN)

N/A

ProSAS [16] Custom
Algorithm − − Cloud −

Ma et al. [17] Custom
Algorithm − − H# Kubernetes −

Miranda et al. [18] Custom
Algorithm − −

Wireless
Sensor

Networks
(WSNs)

N/A

ProSPEC [19] Custom
Algorithm − − Kubernetes −

Liu et al. [20] Watermark − − H# − N/A
Cyber-

physical
system

N/A

ATLAS [21] Custom
Algorithm − − − N/A Windows N/A

NoDoze [22] Custom
Algorithm − − − − N/A Windows N/A

UNICORN [23] Custom
Algorithm − H# − N/A Windows/

Linux N/A

ACE-WARP Custom
Algorithm ∗ Kubernetes

The symbols (), (H#), (−) and N/A mean fully supported, partially supported,
not supported and not applicable, respectively. ∗ACE-WARP attack coverage
relies on underlying detection tool (see Section VIII).

Attack Detection and Mitigation. Most of the existing attack
detection and mitigation solutions are limited to detecting
attacks or security policy violations in a reactive manner,
which cannot prevent irreversible attack damages such as
information disclosure or denial of service. For instance,
Sysdig [24], Falco [10], and OPA/Gatekeeper [5] are runtime
attack detection tools designed for containerized environments.
The authors in [25] presented KubAnomaly, a learning-based
anomaly detection approach for security monitoring in Ku-
bernetes. Several solutions [26], [27] have been proposed to
analyze the performance data of Kubernetes containers and
Pods, and detect anomalies. Unlike those reactive solutions,
ACE-WARP provides a proactive attack mitigation solution

by predicting and mitigating the attacker’s probable next move
after an initial attack is detected.

Proactive Attack Detection and Mitigation. There exist
efforts on security policy compliance for container-based (e.g.,
Kubernetes [19]) and traditional cloud environments ([16],
[28], [29], [30]). The authors in [16], [29], [31] propose
proactive security policy verification where the mitigation is
performed at runtime. ProSPEC [19] extends such proactive
security auditing to Kubernetes. However, as these approaches
only start the mitigation after critical events have occurred,
they may still be too late to prevent irreversible damages.
Several efforts focus on proactive detection of specific attacks.
The authors in [20] propose a watermark-based approach to
proactively defend against man-in-the-middle attacks. PROLE-
Mus [15] is a learning-based approach for addressing denial-
of-service (DoS) attacks. Authors in [18] integrate intrusion
prevention and anomaly detection for wireless sensor networks
(WSNs), which can be a complementary work with ACE-
WARP. Unlike those existing proactive approaches, ACE-
WARP is not limited to specific attacks, and it employs a
non-disruptive mitigation approach (migration of Pods), which
can be launched well before the attack events actually occur
yet without the risk of causing service disruption. ACE-WARP
can address any multi-step attacks involving attack propagation
inside the cluster (detailed in Section II-C).

Provenance Analysis. Provenance analysis solutions aim to
investigate the root cause of detected attacks and do not
provide attack mitigation [32], [33], [34]. UNICORN [23]
proposes a graph-based technique to investigate contextual
information of stealthy APT attack steps without predefined
attack signatures. NoDoze [22] focuses on attack triaging using
provenance graphs to identify anomalous paths for further
manual response. Holmes [35] correlates suspicious events
with the MITRE ATT&CK framework to trigger a detection
signal and provide the analyst with a high-level graph for
further actions. The authors in [21] design a learning-based
approach to build a sequence-based model out of a provenance
graph to extract the attack story. ACE-WARP can leverage
analyst’s feedback after provenance analysis to improve its
attack detection accuracy and risk formulation, while it can
complement provenance-based solutions with its mitigation
capability.

Resource Placement Optimization. The problem of optimal
resource placement and scheduling has been studied [36],
[37], [38], [39], [40], [41]. Since this problem is generally
intractable, heuristics, meta-heuristics, and machine learning
algorithms are proposed to solve the problem efficiently. The
authors in [36], [42] propose a near-optimal heuristic for
virtual network functions (VNF) placement and scheduling in
cloud environments with the objective of minimizing energy
consumption and resource utilization. VNF placement is also
studied in the 5G C-RAN context in [39]. CODO [37] presents
a heuristic solution to the problem of firewall rule ordering
in the cloud to optimize network traffic, QoS/throughput,
delay, and security. In Kubernetes, the authors in [38] pro-
pose a genetic algorithm to solve the non-linear problem of
microservices placement and maximize throughput. Resource

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

allocation to containers based on hyper-heuristic algorithms
is studied in [40]. The authors in [41] study the problem
of scheduling mobile charging infrastructure for vehicles.
The placement optimization to container network functions
is studied in [43]. Similarly, the reduction of cluster threat
and delay are the main objectives for the Pods migration
optimization problem which is formulated in this work in
Section IV.
Moving Target Defence (MTD). Moving Target Defense
(MTD) consists of applying system reconfiguration (e.g., VM
migration, IP shuffling, or redundancy) to dynamically change
the attack surface and deceive attackers [44]. The migration-
based MTD deployment is an easy-to-apply defense in virtual-
ized environments and it is the core technique of many MTD
solutions for cloud computing. Migrations aim to move the
attacker’s VM to prevent compromising the co-resident VMs.
Besides, there are existing works such as [45], [46], [47] that
propose to optimally choose the MTD strategy based on the
attack scenario. However, as ACE-WARP core defense is Pod
migration, we focus on migration-based MTD solutions.

There are three methods of reactive, proactive, and hybrid
strategies when it is the time of deploying migration-based
MTD solutions. The reactive method is based on a security
alert. The proactive method triggers migration based on a
fixed or random time intervals. Proactive methods ensure
regular migrations even in absence of any attack. The hybrid
strategy is a combination of both reactive and proactive
methods, where the time interval to perform migration is
based on security alerts while the interval is also integrated
to prevent potential, undetected security threats (e.g., zero-
day attacks) [44]. The major difference of ACE-WARP with
proactive MTD approaches is that we predict the attack and
proactively mitigate its propagation. However, proactive MTD
is just applying migration in advance with no attack indicator
or prediction. Therefore, it is fair to compare ACE-WARP with
existing proactive MTD approaches in Section VII-G.

II. PRELIMINARIES

This section provides preliminaries.

A. Background

Docker Container. A Docker container is a lightweight,
standalone, and executable package that includes everything
needed to run a piece of software, including the code, libraries,
and settings. Docker Engine is the core technology that allows
containers to run on a host system [48].
Kubernetes. Kubernetes [1] is one of the most widely adopted
container orchestrators for cloud-native applications [49]. On
the left side of Figure 1, the Kubernetes cluster includes one
Master Node and two Worker Nodes hosting applications and
services within Pods.
Pod. A pod is the smallest deployable unit in Kubernetes.
It represents a single instance of a running process in the
cluster.A pod can contain one or more containers and it encap-
sulate an application’s container(s) that share resources such
as storage volumes, IP addresses, and environment variables.

Pods are designed to be ephemeral and If a pod fails or needs
to be scaled, Kubernetes easily terminate it and replace it to
ensure high availability and reliability of applications running
on the cluster. In Figure 1 Pods are hosting some network
functions in a 5G Service-Based Architecture (SBA) [50].
Some Pods have explicit connections shown as a direct line
between them.
Falco. Our cluster in Figure 1 is also configured with
Falco [10], a popular runtime security solution which reports
security alerts on suspicious events in the cluster. Specifically,
Falco employs an agent on each Worker Node to monitor and
detect malicious activities, which will then be reported in the
form of alerts to the Falco agent on the Master Node.
Network Slicing. Network slicing, as a network architecture
method, allows multiple logical networks (slices) to co-exist
on the same virtual network infrastructure (e.g., Kubernetes
cluster) [13]. Each slice is logically isolated and can host
services sharing similar requirements [51]. The left side of
Figure 1 depicts how those 5G network functions can be
separated into multiple slices (illustrated in different colors).
In ACE-WARP, we take advantage of network slicing to
customize attack mitigation for different tenants.

B. Motivating Example
Figure 1 depicts an attack scenario exploiting a real-

world vulnerability [52] in a Kubernetes cluster hosting a 5G
core [50].
Attack Scenario. The upper-left corner of Figure 1 de-
picts a container escaping attack scenario (assuming security
measures such as AppArmor are disabled and SYS_ADMIN
capabilities are enabled) as follows. First, the attacker exploits
the above-mentioned vulnerability in the rightmost container
(which hosts the 5G Access and Mobility Management Func-
tion (AMF)) to escalate his/her privilege to root. Second,
to escape the Pod’s isolation and get into Worker Node 1,
s/he creates a new control group (cgroup) by mounting
a cgroup controller inside the container; s/he enables the
notify_on_release option and specifies a command to
be executed on the host in the release_agent file; subse-
quently, once the cgroup process terminates, the command
in the release_agent file is executed on the host, allowing
the attacker to escape into the Node. Finally, the attacker now
gains unauthorized accesses to other containers (e.g., Unified
Data Management (UDM)) inside the co-located Pods.

As shown in the upper-left corner of Figure 1, those three
attack steps are assumed to occur at time T6, T8, and T10,
respectively. Falco raises an alert for each attack step, as
shown above the timeline in the upper-right corner of Figure 1
(Alert #1 can be ignored for now and will be explained
later). First, at time T6, Alert #6 reports a detected priv-
ilege escalation in AMF. Second, at T8, Alert #8 reports
a shell being spawned inside a container. Finally, at T10,
Alert #10 reports a suspicious file access. To mitigate the
attack based on those alerts, the right side of Figure 1 also
shows three potential approaches.
1. Early (but disruptive) mitigation. Assume Security ad-
min #1 would like to minimize the security threat by taking an

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Fig. 1: Motivating example showing a container escaping attack (left) and three potential solutions (right).

aggressive mitigation approach as follows. Upon the detection
of Alert #1 at time T1, which indicates a write operation
in the binary directory of the Authentication Server Function
(AUSF) Pod, the admin promptly takes action to block further
access to its directory. However, after further investigation,
s/he realizes that Alert #1 is actually a false positive
indicating no real threat. Nonetheless, his/her previous action
has already caused unwanted disruption to the AUSF service,
which is certainly not acceptable.

2. Non-disruptive (but late) mitigation. On the other hand,
assume Security admin #2 takes a more cautious approach
to avoid causing any service disruption. Therefore, the admin
carefully analyzes each alert (till Alert #10), and eventu-
ally succeeds to identify Alert #1 as a false positive and
fully understand the attack scenario. However, by the time s/he
starts to implement the mitigation action (of enforcing a new
network policy) at time T10, it is already too late, since the
confidential 5G user data managed by UDM is already leaked
out to the attacker, which is a damage that cannot be reversed.

3. Our solution. As shown at the bottom of the figure,
ACE-WARP can overcome the above limitations through a
proactive and non-disruptive approach as follows. First, it
proactively builds an attack prediction model offline (before
T1). Next, upon receiving an alert at runtime, it evaluates the
risk of attack propagation by predicting potential future attacks
(using the attack prediction model), and triggers a mitigation
action once such a risk exceeds a predefined threshold. For
instance, at time T1, it decides that the attack propagation
risk of Alert #1 is not yet sufficient to trigger a mitigation
action. However, at time T6, by applying the prediction model
to Alert #6, it predicts that a future escaping attack is
probable (which would actually happen at T8 if not prevented),
and hence decides the risk is high enough (illustrated as the
yellow to red arrow) to trigger the mitigation. Therefore, at
T6, it performs live migration of Pods following an optimal
migration plan, e.g., by migrating the Pods containing UDM,
and UPF a to another Node. As a result, even though the

attacker may still escape to the Node at T8, the threat
to the cluster is decreased as s/he would no longer have
access to UDM, and UPF. Note the live migration would not
cause any service disruption even if Alert #6 later turns
out to be a false positive. Finally, as demonstrated in the
magnified area, our heuristic optimization algorithm can find
an optimal migration plan more efficiently, with a higher
level of threat reduction and less cost (delay), compared to
a standard (genetic) optimization algorithm. In addition, our
solution provides customizable mitigation to satisfy the tenants
different requirements via network slicing.

C. Threat Model

We mainly focus on mitigating the potential damages caused
by attack propagation inside a Kubernetes cluster. Therefore,
the in-scope threats may include any attacks that start with
compromising a container (which can be an easy target
since container images are known to be buggy), and then
escape the container to compromise/take control of node,
and subsequently other containers/nodes in the same cluster,
causing large-scale damages. Such attacks may be launched
by external attackers, a malicious tenant, or insiders through
exploiting misconfigurations or vulnerabilities in a Kubernetes
cluster. Examples of such attacks include Advanced Persistent
Threats (APTs) attacks, which typically involve multiple steps
and lateral movements between multiple Pods. We assume
the initial step(s) of attacks can be detected by an existing
detection or monitoring tool such as Falco.

As ACE-WARP is designed to mitigate the damages caused
by detected attacks, we summarize the out-of-scope attacks in
the following:
• Preventable Attacks: Attacks that can be effectively pre-

vented using existing prevention solutions, e.g., creden-
tials brute-forcing attacks blocked by password policies,
will not require ACE-WARP for mitigation.

• Single-Step/Single-Pod Attacks: Attacks whose damage
can be realized in a single step or in a single Pod, e.g.,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

DoS/DDoS attacks launched from outside the cluster, and
attacks targeting a single service or a single Pod, are out-
of-scope since there is no room for ACE-WARP to react
and mitigate their damages.

• Undetected Attacks: Attacks that can completely evade
existing detection tools, e.g., social engineering attacks
and zero-day attacks, will not trigger ACE-WARP. In
fact, we rely on existing attack detection tools to provide
attack alters so that ACE-WARP can prepare proactive
mitigation plan.

• Scripted/Fast Attacks: Multi-step attacks that are scripted
and can be performed faster than our mitigation approach
can perform the migrations are out-of-scope.

• Other Attacks: Attacks targeting lower-level infrastruc-
tures than containers, attacks that can tamper with the
integrity of ACE-WARP, Falco, and Kubernetes, and
attacks that can breach the isolation of network slicing
are all out of the scope of this paper. Similar assumption
is made in [19], [25]

We assume the initial step(s) of attacks can be detected by
an existing detection or monitoring tool such as Falco. We also
assume the containers may be escaped due to existing vulnera-
bilities or weaknesses. Note that, compared to VMs, containers
offer minimal separation from the host OS and other containers
on the same machine, and consequently the security boundary
is less robust. Although there exist approaches to provide
isolation for containers, such as using Linux-based features
including cgroups, AppArmor and namespace, these are not
bullet-proof and can be circumvented. For instance, CVE-
2022-0492 is a privilege escalation vulnerability in the kernel,
that affects cgroups [53]. CVE-2017-6507 was discovered for
incorrect handling of unknown AppArmor profiles [54], and
CVE-2022-0185 affects the user namespaces though buffer
overflow [55].

Fig. 2: An overview of ACE-WARP.

III. ACE-WARP OVERVIEW

Figure 2 shows an overview of ACE-WARP, including the
overview of its integration to Kubernetes cluster (on the left)
and overview of its major steps (on the right).

Integration Overview. ACE-WARP is integrated with 5G core
Kubernetes cluster. Specifically, there is an ACE-WARP agent
deployed in each Node (both Worker and Master) of cluster.
The ACE-WARP agent in Master Node is connected to Falco
to receive alerts collected from those Nodes. Additionally,
the tenants’ service-level agreement (SLA) policies, such as
security and delay requirements, are also the input to ACE-
WARP.

Approach Overview. ACE-WARP approach is performed in
two major phases: (i) Offline Modeling, and (ii) Runtime De-
tection and Mitigation. During the offline phase, ACE-WARP
first formulates an optimization model to derive cost-effective
migration plan for Pods while reducing the overall cluster
threat. It also builds an attack prediction model to predict the
attacker’s next steps. During the runtime phase, ACE-WARP
proactively predicts attack steps from a received Falco alert
using the prediction model and calculates the associated risk
for each Pod. If the risk is higher than a predefined threshold
(derived from tenants’ inputs and discussed later), ACE-WARP
initiates non-disruptive mitigation where it first derives Pods
migration plan using the optimization model to minimize
the cluster threat with minimum imposed delay. Thus, ACE-
WARP proactively prevents the attacker from proceeding with
the attack. In the following, we further illustrate ACE-WARP’s
approach using an example.

Example 1. Figure 3 illustrates a toy example to show
major steps of ACE-WARP for a cluster of two Worker
Nodes (Node 1 and Node 2) where Pods are distributed
over two slices (Slice A and Slice B). First, ACE-
WARP builds an attack prediction model (based on histor-
ical alerts) with three attack vertices where the probability
for an attacker to move from Privilege Escalation
to Execution is 0.31 (indicated as edge label). Sec-
ond, at runtime, ACE-WARP receives Alert 1 related
to the same attack scenario described in our motivating
example (exploiting CVE-2021-3156) with the alert tag
privilege_escalation. Third, ACE-WARP finds the
corresponding vertex (Privilege Escalation) in the
prediction model for the current attack and then predicts po-
tential next moves with the highest probability (Execution).
Fourth, it calculates the estimated risks incurred by all the
Pods (Pod 1 - Pod 6) in the cluster using the risk formula
(explained later in Section IV), and finds the Pods with a
risk higher than their slice threshold. Fifth, while meeting
the constraints and achieving the objective of minimizing the
Threat and Delay, it finds two migration options: (i) Pod 3 to
Node 2 in Slice A, and (ii) Pod 5 to Node 1 in Slice
B. Finally, ACE-WARP performs those two migrations and
thus, the cluster threat is reduced.

IV. OFFLINE MODELING

This section describes the offline steps of ACE-WARP.

A. Optimization Model Formulation

The problem of optimal Pod placement in the cluster has a
trade-off between the potential security threats to a cluster (i.e.,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

Fig. 3: Illustrative example of ACE-WARP approach overview.

TABLE II: List of input parameters.

Input Symbol Description
P Set of all Pods p of the cluster
N Set of all Nodes n of the cluster
xn

p xn
p = 1 if Pod p is located at Node n; Otherwise 0

MDp Migration delay of Pod p
AVp Asset value of Pod p
S izep Size of Pod p (in MB)
Capacityn Maximum capacity of Node n (in MB)
patt The Pod under attack

Conpp′
Conpp′ = 1 if Pod p has a network connection with
Pod p′; Otherwise 0

cluster threat) and the delay involved with Pods’ migration
from one Node to another in a cluster (i.e., cluster delay).
Therefore, in this step, ACE-WARP aims at formulating the
Pods placement as an optimization problem. Table II lists the
parameters used in our problem formulation. We formulate
a mathematical model after defining the input parameters,
constraints, decision variables, and optimization objectives.
Decision Variable. We define the decision variable yn

p to
represent if Pod p is migrated to Node n or not:

yn
p =

1, if Pod p migrated to Node n
0, otherwise

∀p ∈ P (1)

Constraints. At a particular time, a Pod p ∈ P can be located
at only one Node n ∈ N:

∑
n

yn
p = 1, ∀p ∈ P (2)

On the other hand, each Node n ∈ N has a maximum
capacity, Capacityn, and hence, we cannot migrate more Pods
to Node n beyond its capacity as shown in Equation (3).

∑
p

(yn
p × S izep) ≤ Capacityn, ∀n ∈ N (3)

Here, S izep is the size of Pod p.
Objective. Our multi-objective optimization model simulta-
neously intends to: (1) minimize the cluster threat; and (2)
minimize the migration delay for critical Pods as follows.
(1) Cluster Threat. According to our threat model, any Pod that
can be reached from the attacked Pod after a finite number
of lateral movements is under threat. Therefore, the threat

of attack propagation in the cluster can be modeled as the
summation of the asset values of all such Pods. More formally,
we define a binary relation R over the set of Pods P to
represent the collection of pairs of Pods that are reachable
using direct connection or co-location:

R = {(pi, p j) | pi, p j ∈ P, (Conpi p j = 1) ∨ (∃n ∈ N, yn
pi
× yn

p j
= 1)} (4)

Let R∗ be the transitive closure [56] of R (i.e., the collection
of pairs of Pods that are reachable via a finite number of
applications of R). Given any attacked Pod patt, we can
then define the cluster threat, T, using R∗. Specifically, as
Equation (5) shows that the cluster threat is modeled as the
total asset value that could potentially be affected by attack
propagation from the attacked Pod to all other Pods which are
either directly connected or co-located with the attacked Pod.

T =
∑

p: (patt ,p)∈R∗
AVp (5)

(2) Delay. The total migration delay D is expressed as:

D =
∑

p
(1 −
∑

n
xn

pyn
p) × MDpn × AVp (6)

MDpn is the delay of migrating Pod p to Node n, and when
Pod p is not migrated (i.e., xn

p = yn
p), (1 −

∑
n xn

pyn
p) = 0, and

hence, according to Equation (6), Pod p does not add any
delay. Moreover, we also weigh the delay of each Pod with
its asset value to express that the migration delay has more
impact on Pods with higher asset values (likely critical) than
on Pods with lower asset values (less critical).

Therefore, we can formulate a multi-objective optimization
problem to minimize both the cluster threat (T) and delay (D).
Alternatively, we can also combine the two objectives through
a weighted sum, with α and β as the weighting factors that
are used to adjust the relative importance of each objective
(with α + β = 1). Therefore, if minimizing the threat is
more important than maintaining low latency, then α should
be larger than β, and vice versa. In practice, α and β can
be adjusted as per each tenant’s requirements. Hence, our
optimization problem can be formally defined as follows.

Definition 1. Given a set of Nodes N, a set of Pods P, and
a Pod patt ∈ P under attack, minimize (T,D) or minimize
(αT + βD) under given constraints.

Theorem 1. Our problem in Definition 1 is NP-hard.

Proof. We reduce the well known NP-hard Minimum Domi-
nating Set problem [57] (i.e., finding a subset of nodes in a
graph such that every node in the graph is either in the subset
or adjacent to another node in the subset) to our problem.
Consider any instance G = (V, E) of the Minimum Dominating
Set problem, where V is the set of vertices and E the set of
edges. We construct an instance of our problem as follows.
For each v ∈ V , we create a Node that contains two Pods,
one with asset value 0, and the other with asset value 1. For
each e ∈ E, we assign a migration delay of 0 for migrating a
Pod with asset value 0 in either direction of the edge, and a
migration delay of 1 for all other migrations. We also assume

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

the attacked Pod patt is not co-located with, but connected to,
all the Pods with asset value 0.

Let α = 1 and β = ∞. To minimize (αT+βD), we must have
D = 0, while minimizing T. First, to achieve D = 0, we can
only migrate the Pods with asset value 0 along each edge in
either direction (since all other migrations have a delay of 1).
Second, to minimize T, we need to minimize the total number
of Nodes that contain Pods with asset value 0 after migration,
since each such Node will incur a threat of 1.

To minimize the total number of Nodes containing Pods
with asset value 0 after migration, we need to find a minimum
subset of Nodes, such that every Node n we create is either
already in this subset (no migration is needed), or adjacent to
another Node n′ in the subset (the Pod with asset value 0 in n′

will be migrated to n, with a delay of 0), which is equivalent
to the dominating set. Therefore, finding a solution to this
instance of our problem yields a solution to the given instance
of the Minimum Dominating Set problem in polynomial time.
Since the latter is known to be NP-hard, this concludes the
proof. □

B. Attack Prediction Model Building

This step is to build an attack prediction model based
on the historical Falco alerts to predict the attacker’s next
move. Specifically, ACE-WARP first collects and processes
Falco alert logs of Pods in a cluster by parsing the alert
log entries from different Pods and extracting their mitre
<tactic name> tag and forms a sequence. Second, ACE-
WARP learns the predictive model from the sequences of
tactics by leveraging Bayesian network [58] for this model
where Nodes indicate MITRE ATT&CK tactics, edges indicate
their transitions and are labeled with probabilities of transi-
tions. Note that Falco alerts already contain MITRE tactics,
and hence no additional mapping is needed (mapping Falco
alerts to MITRE techniques, which are more fine-grained than
MITRE tactics, can potentially make our attack prediction
more accurate, although such a mapping is non-trivial [59].

Example 2. Figure 4 shows an example of this model built
out of the MITRE tactic parameter in the alerts. Our attack
scenario tactics (highlighted in red) start from the Privilege
Escalation, lead to Execution and then use Persistence, with
a probability of 31% and 25%, respectively.

Fig. 4: Attack prediction model example.

V. RUNTIME DETECTION AND MITIGATION

This section presents the steps during our runtime phase.

A. Proactive Attack Prediction

This step is to predict future attacks based on alerts raised
by Falco at runtime. To that end, ACE-WARP first applies the
previously built attack prediction model to find the attacker’s
potential next step. Then, it calculates the risk for Pods by
examining the alert parameters where it assigns each parameter
a value according to the definition given below. If the calcu-
lated risk exceeds a predefined threshold, it performs the Pods
migration based on optimization model (as in Section V-B).

Example 3. Figure 5 shows how the risk associated
with pod_one is calculated using our risk formula (Equa-
tion (7)). The MITRE ATT&CK tactic for the observed alert
is Privilege escalation. Therefore, according to Fig-
ure 4, the next likely tactic is Execution. Other variables of
the risk formula are extracted from alert as shown in Figure 5.
Finally, the overall risk for pod_one is calculated using the
following formula.

Risk = Priority_S everity × MITRE_Tactic_S everity×
Context_S everity × Next_MITRE_Tactic_Probability×

max(NEXT_MITRE_Tactic_S everity) × Asset_Value
(7)

Fig. 5: Parameters value extracted from a received Falco alert.

In the following, we describe the Equation (7) parameters.
• Priority Severity [1 − 5]: is enumerated from one to

five based on the priority parameter in a Falco alert (i.e.,
Debug, Notice, Warning, Error, and Critical), respectively.

• MITRE Tactic Severity [1 − 5]: is the average priority
severity of all alerts for one MITRE ATT&CK tactic.

• Context Severity [1 − 5]: is assigned to alert parameters
depending on their predefined malicious level.

• Next MITRE Tactic Probability [0 − 1]: is the prob-
ability of the attacker’s next tactic from the prediction
model.

• Asset Value [1 − 5]: is assigned by security admin to
each Pod based on the relative importance of hosted
services and information.

• Next MITRE Tactic Severity [1 − 5]: is the MITRE
Tactic Severity for the next predicted tactic.

B. Non-disruptive Attack Mitigation

This step is to perform the mitigation when the associated
risk for at least one Pod is higher than a certain threshold.
ACE-WARP optimally mitigates by reducing both the migra-
tion delay and overall threat so that with the growing number
of migrations, it does not incur prohibitive delay to the users.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

Specifically, ACE-WARP first obtains the current placement
information of the entire cluster. Second, it finds the optimal
migration plan that leads to a safer cluster state using the
previously formulated optimization model and our heuristic
algorithm, Proactive 0Ptimization (P0P) as in Algorithms 1
and 2, discussed later. Third, ACE-WARP utilizes CRIU [60]
to migrate the selected Pods to the selected Nodes, and
finally, the cluster transits into a state with reduced threat.
In the following, we elaborate on our heuristic optimization
algorithm.

1) Objective Optimization with P0P: As the optimization
problem formulated in Section IV-A is non-linear in nature,
we propose our heuristic algorithms (Algorithms 1 and 2)
which finds the minimum number of migrations and optimal
destination in order to mitigate the attack and reduce the
cluster threat. Additionally, we explore the potential of using
standard heuristics such as genetic algorithms to find near-
optimal solutions for the problem. However, as shown in
Section VII, such a standard optimization algorithm not only
finds sub-optimal solutions, but is also computationally more
expensive.

Next, the Network Slicing sub-step ensures the Pods are
placed in their corresponding slices. Finally, using the migra-
tions discovered using Algorithm 1, ACE-WARP performs the
actual Pod migration from source to destination Node.

The optimal Pods placement problem is detailed into three
sub-problems to prevent recomputing the steps (a dynamic
programming-based approach [61]) as follows. Both algo-
rithms participate in finding and performing the optimal mi-
gration.
1) Threat: isolating the Pods that are either directly connected

or co-located with the attacked Pod (patt).
2) Delay: having the maximum delay tolerance in the each

tenant’s SLA and each Pod migration delay (MDp), find the
maximum possible number of Pods allowed to be migrated.

3) Capacity: having each Node size (Capacityn), and Pod
size (S izep), find the maximum possible number of Pods
to be placed in each Node.

Algorithm 1 solves the Threat, and Delay sub-problems. Us-
ing a breadth-first search algorithm (BFS), it finds all the Pods
connected to the attacked Pod(s) (both direct connection, and
co-location), defined as HotPods (Line 1). For the Delay sub-
problem, it finds the maximum number of migrations (Line 2).
In Lines 3 and 4, it finds the OptimalNode for migration des-
tination. This Node has the minimum asset value of Citizens
(i.e., Pods that do not belong to HotPods). The OptimalNode
is the best destination as it hosts less important Citizens in
case a HotPod migrates there. In Lines 5-7, as long as we do
not exceed the delay constraint, HotPods are migrated to the
OptimalNode, and placed in their slice. Eventually, if we are
left with Migrations, we attempt to evict Citizens to another
Node and thus achieve more isolation for the HotPods. The
complexity of BFS is O(Pods+Connections), and accordingly
P0P complexity is linear.

Algorithm 2 is called right before the migration to solve
the Capacity sub-problem. It stores the result of a maximum
number of Pods per Node in LNodeCapacity (Lines 1 and 2). The
preservation of the result in this list prevents the recursive

computation, and reduces the algorithm complexity. Lines 5
and 6 are to meet the MaxCapacity and MaxDelay constraints.
Lines 7 and 8 perform the migration to the Destination
Node using CRIU, and return the delay. In case the delay
exceeds the delay constraint, the algorithm stops, and in case
a capacity constraint is exceeded, the next available Node from
LNodeCapacity is selected as destination.

Algorithm 1: P0P
Require: G: Cluster graph, MaxDelay, LNodes: Nodes list, LAttackedPod:

Attacked Pods list
Ensure: G′: Optimized cluster graph, Delay
1: HotPods = BFS (G, LAttackedPod)
2: Migrations = Max_Num_Migration(MaxDelay)
3: OptimalNode = Find_Optimal_Node(G)
4: Citizens = Find_NonHot_Pod(OptimalNode) {List of Pods to be

potentially compromised sorted by their asset value}
5: while (Migrations > 0 and Len(HotPods) > 0) do
6: Delay += Migrate(G,HotPods.pop(0),OptimalNode)
7: Ad just_Network_S lice()

{Number of HotPods is less than delay tolerance}
{Citizen Pods eviction to other Nodes due to threat}

8: if Migrations > 0 then
9: while Migrations > 0 and Len(Citizens) > 0 do

10: Delay += Migrate(G,Citizens.pop(0), LNodes − OptimalNode)
11: Ad just_Network_S lice()
12: Return G’, Delay

Algorithm 2: Migrate(G, Pod,Destination)
Require: G: Cluster graph, MaxDelay, MaxCapacity, LNodes: Nodes list,

LNodeCapacity: Nodes capacity list
Ensure: Delay: Migration delay
1: for Node in LNodes do
2: LNodeCapacity = Max_Num_Pods(Node)
3: while Len(LNodeCapacity) > 0 do
4: if Check_Capacity(Destination) then
5: if Check_Delay(Pod) then
6: MigDelay = CRIU(Pod,Destination)
7: Ad just_Network_S lice()
8: else
9: Return : 0 {Beyond MaxDelay}

10: else
11: Destination = LNodeCapacity.pop(0) {Next available Node}
12: Return MigDelay

2) ACE-WARP with Network Slicing: The main goal of
network slicing is to provide tenants with a proactive security
solution that can be customized based on their requirements
(i.e., security and delay). Network slicing can be leveraged to
have many logical networks (slices) over the cluster through
three different methods as follows.
No Network Slicing. In the first method, all services are
deployed in the Kubernetes cluster without being logically
separated (i.e., no network slicing). Although there is much
less network complexity, it is not possible to differentiate
between different tenants services. As a result, ACE-WARP
is obliged to set one global threshold for the whole cluster,
which eventually sacrifices some services requirements over
the others.
Network Slicing - Type one. In the second method, there is
one slice per Node hosting services with similar requirements.
Although this approach can take advantage of ACE-WARP in
terms of different thresholds per slice, it has several disad-
vantages. First, in the case of service scaling, a Node is fully

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

devoted per slice, which is not efficient in terms of resource
utilization. Second, deploying Pods with similar services in
one Node, exposes them to a single point of failure (SPOF)
risk. Third, this method might interfere with our optimization
objectives. For instance, if ACE-WARP decides to migrate
Pod p to Node n, and Node n does not host its slice, the
migration plan must be modified.
Network Slicing - Type two. In the third method, all slices
are present in each Node, to overcome the previous method’s
disadvantages. Therefore, not only it does not interfere with
P0P’s optimization objectives, but also it distributes the Pods
over multiple Nodes, using the resources efficiently, and
resulting in less risk of SPOF. Example 4 depicts the P0P
logic.

Example 4. Real-world Scenario: Figure 6 depicts a
functional example of P0P and illustrates its adjustability to
the tenants’ requirements in a 5G scenario. Three services
(A, B, C) are deployed in their slices in the cluster. As
shown in Figure 6a, A1 is identified as the AttackedPod
during the Proactive Attack Prediction step. The HotPods are
either co-located or directly connected with A1. Therefore,
services B and C are included in the cluster threat as well.
Based on Algorithm 1, HotPods are: A2, and A3 due to co-
location and B2, and C3 due to direct connection with A1. The
OptimalNode is Node 1, because it has less asset value
compared to other Nodes. B1 Pod is a Citizen as a non-
hot Pod. The goal is to isolate the AttackedPod and the
HotPods in the OptimalNode, and evict the Citizens,
as long as there are available migration moves. Therefore, C3
is migrated to Node 1, and Citizen B1 is migrated to an
available Node (e.g., Node 2) in its own slice.

(a) Before: attacker initial step.

(b) After: ACE-WARP mitigation.

Fig. 6: ACE-WARP and network slicing.

In the second part of this example, we elaborate on the
advantage of network slicing for tenants’ requirements ad-

justability. Table III compares the three slicing methods for
the three aforementioned services. Suppose services A, B,
and C require 80, 70, and 60 (%) security, and accept up to
2, 1, and 0.5 (seconds) delay, respectively, according to the
tenants’ SLA specifications. As a result, the real-world use
case for this approach in case of not utilizing network slicing
is that either security or delay is sacrificed for some services
over others because of selecting a global threshold (e.g., 40%).
However, both network slicing types (Type one and Type two)
can adjust with each service requirement.

TABLE III: ACE-WARP in 5G - example with three services.

Approaches
WARP Threshold

per Service
Resource
Utilization

(# of Nodes)A B C
No Network Slicing 30% 30% 30% 3

Network Slicing- type one 27% 42% 53% >3
Network Slicing- type two 27% 42% 53% 3

3) Mitigation: This step is to perform mitigation by using
the optimization result as a migration plan (i.e., list of Pod(s)
to be migrated to the selected destination(s)). There are several
ways for Pods migration, and we detail three of them as
follows.

Kubernetes Rescheduling and Docker. Utilizing Kubernetes
rescheduling for Pod migration poses the major limitation due
to the lack of control over the destination Node selection,
which is in contrast to P0P objective optimization [62]. Al-
though, Pods’ anti-affinity can be used to modify the desti-
nation Node, it requires yaml file modification at runtime
(e.g., specifying Nodes for the Pods through labels). Since,
any changes to the yaml file requires Pod redeployment, this
method is not efficient for our purpose. Docker has a similar
but more efficient mechanism as Kubernetes, by stopping the
Pod, pushing into a local repository and recreating it in a new
Node. However, its incurred delay might not be desirable to
the end user.

CRIU. CRIU [60] is a checkpoint and restore tool that can be
used to migrate containers by saving the latest checkpoint of
the container’s state in the disk and restoring them in a new
Pod at the destination Node. CRIU keeps the network con-
nection states inside the containers to meet the non-disruptive
migration principle. In ACE-WARP, CRIU checkpoints the
latest state of the container prior to the Falco alert and ensures
that the state is prior to the attacker’s presence. Therefore, any
container in the new Pods will use the latest secure snapshot
instead of the compromised one. After saving checkpoint, the
Pod is immediately deleted (to minimize the attacker time
window), and restored with its checkpoint in the destination
Node. During the restoring process (i.e., migration), a delay is
experienced by the end user which is mainly affected by the
sizes of containers (discussed in Section VII-A. As a result,
tenants will not experience interrupted connections, except
some delay in responses. Such a delay of a few seconds can
be considered acceptable to tenants since even longer delays
may naturally happen over the internet connection between the
tenants and cloud.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

We overlook the checkpoint transfer time to the disk, as
several transfer methods (e.g., SSH/SCP, FTP, rsync [63]) exist
with various performances.

VI. IMPLEMENTATION

A. Challenges

During building this dataset, we encountered several chal-
lenges as follows. First, Falco alerts may be reported at a high
rate from many unrelated resources in a Kubernetes cluster.
To identify correct alert sequences and reconstruct the attack
steps, we wrote scripts to automatically aggregate the alert
by resources (e.g., using the container IDs) and then extract
the MITRE ATT&CK tactics’ property from the sequence
of alerts on each container. Second, the original dataset we
obtained is imbalanced with a significantly higher number of
normal alerts than attack ones, as Falco tends to generate a
considerable number of alerts for normal system events. To
obtain a realistically balanced dataset [21] for our experiments,
we undersample the normal alerts by filtering out normal
alerts that share more than 80% similarities, and oversample
the attack alerts by duplicating attack alerts (since different
attacks may share similar tactics regardless of the exploited
vulnerability or the executed payload [21]).

Furthermore, the communication from the control plane API
server to the worker nodes is through the kubelet present
on each node in the cluster. Similarly to Falco, ACE-WARP
has one agent (Pod) in the control plane and every worker
node. Thus, any communication from master node to the
worker nodes is through the API server which is based on the
standard trust model of Kubernetes [1]. Kubernetes provides
SSH tunneling or -kubelet-certificate-authority
flag to prevent man-in-the-middle and untrusted connection.
Moreover, as a replacement to the SSH tunnels, Kubernetes
has provided the “Konnectivity” service which provides TCP
level proxy for the control plane to cluster communication.
Therefore, all the information sent from worker nodes to the
control plane is secure and reliable.

B. Implementing and Integrating ACE-WARP with Kubernetes

ACE-WARP is implemented and integrated with Kubernetes
following the architecture shown in Figure 7. Specifically,
ACE-WARP is implemented in Python 3.8 and integrated with
Kubernetes v1.20.2. The physical infrastructure is composed
of one physical rack-mounted server with 2x Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz and 128GB of DDR4-2933
running Debian 10. Our Kubernetes cluster is hosted over
11 VMs (one Master Node and ten Worker Nodes) running
Lubuntu 20.04, with VirtualBox 6.1 as the hypervisor. For
alert collection, we deploy Falco in our Kubernetes cluster
using its official Helm deployment [64]. The prediction model
(Bayesian network) is implemented using the pgmpy library.
At runtime, we leverage CRIU v0.27.0 for mitigation (i.e.,
Pods migration). For network slicing, the netaddr Python
library is used.

Fig. 7: ACE-WARP architecture.

C. Auto-scaling ACE-WARP

Kubernetes supports automatic horizontal scaling, which
can dynamically adjust the cluster to the tenants’ service
requirements by increasing or decreasing the number of
Pods/Nodes in the cluster. Similarly, we implement ACE-
WARP in such a way that it can also scale horizontally using
Kubernetes DaemonSet [65]. Specifically, new ACE-WARP
agents will be automatically created upon Nodes scaling up,
and those agents will communicate with the main ACE-WARP
agent (deployed in the Master Node) to obtain its configuration
regarding network slices (i.e., threshold values, as detailed
below). In case of Node termination due to services scaling
down, Kubernetes will take care of gracefully terminating the
Pods containing ACE-WARP agents.

D. Portability to Other Cloud Platforms

ACE-WARP can potentially be adapted to other major
cloud platforms, such as Amazon Elastic Container Service
(ECS) [66] and Microsoft Azure [67]. The components of
ACE-WARP that may depend on the platform include the run-
time monitoring tool, the mapping between alerts and MITRE
tactics, and the migration. First, different monitoring tools
(e.g., Falco [10], Sysdig Secure [68], and Prometheus [69])
may be leveraged for different cloud platforms. Also, there
are different dedicated plugins to handle the MITRE ATT&CK
framework in different cloud platforms (e.g., in Azure Platform
Logs [70] and AWS [71]). Second, although the optimization
step is platform-independent, the migration step of ACE-
WARP will depend on specific migration techniques used in
the cloud platform. Finally, ACE-WARP is independent of the
container orchestrator and can thus work for other orchestra-
tion systems such as Docker Swarm [72] or OpenShift [73].

E. Building Dataset

To facilitate learning our prediction model (see Sec-
tion IV-B) and to support future research, we build a relatively
large dataset of Falco alerts for Kubernetes, which is publicly
available on GitHub [11]. Our dataset includes the alert sam-
ples of both normal activities and (APT) attacks. For normal
activities, we rely on the fact that Falco generates normal
daily routine alerts even in the absence of any attack, therefore

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

TABLE IV: Overview of ACE-WARP dataset.

Attack
ID

Attack
Campaign

Attack Featuresa

PL PA INJ IG BD

MITRE ATT&CK Tac-
tic Sequenceb

1 APT 3 [74] ✓ ✓ ✓ ✓ ✓ Exe, DE, Dis, DE, LM

2 Spam cam-
paign [75] ✓ ✓ ✓ ✓

Dis, Per, Exe, DE, DE,
LM, Exf

3 APT 29 [76] ✓ ✓ ✓ ✓ ✓
Per, Exe, DE, PE, DE,
Dis, LM, IA, Per, PE, DE

4 Escape
attack [77] ✓ PE, Exe, Per

5
Simulated

cryptominer
spread [78]

✓ ✓ ✓ ✓ Dis, Exe, Per, DE, LM

6 Root data
theft [79] ✓ ✓ ✓ Dis, Per, PE, Exf, Per, LM

7 SWC [80] ✓ ✓ ✓ ✓ Dis, Exe, DE, Per

8 Targeted gov
phishing [81] ✓ ✓ ✓ ✓ Dis, Per, LM, Exf

aPL: Phishing email link. PA: Phishing email attachment. INJ:
Injection. IG: Information gathering. BD: Backdoor.
bExe: Execution, DE: Defense Evasion, Dis: Discovery, LM: Lateral
Movement, Per: Persistence, PE: Privilege Escalation, IA: Initial
Access, Exf: Exfiltration

we label these samples as “normal”. For the attack alerts, we
leverage CALDERA [82], an adversary emulation platform de-
veloped by MITRE, to mimic attacks in a Kubernetes cluster.
Our dataset contains 231k alerts (including 2,314 attack alerts
and 228,686 normal alerts). Table IV provides more details of
those attacks including the attack feature(s) they follow and
the MITRE ATT&CK tactic sequences collected and extracted
from the alerts.

VII. EVALUATION

This section evaluates the effectiveness of ACE-WARP.
In particular, we investigate the following research questions
(RQ):
RQ1. What is the cost of Pod migration?
RQ2. How effective is our optimization algorithm (P0P)?
RQ3. How effective is ACE-WARP for mitigating attacks?
RQ4. How much overhead does ACE-WARP incur?
RQ5. What is the impact of network slicing on ACE-WARP?
RQ6. What is the impact of false positives on ACE-WARP?
RQ7. How much does ACE-WARP surpass MTD approaches?

A. Migration Cost

To answer RQ1, we measure the cost of migration.

Migration Approaches Comparison. As discussed in Sec-
tion V-B3, migrating a Pod is performed by migrating its
container(s). In this set of experiments, we measure the delay
caused by three popular migration methods (i.e., CRIU, Ku-
bernetes rescheduling, and Docker) for containers of different
sizes. Among the three methods shown in Figure 8a, we find
that CRIU has the best performance (i.e., the lowest delay) as
it stores the checkpoints directly in memory. Moreover, unlike
other methods, it does not need to redeploy the Pods from
yaml files (cf. Kubernetes rescheduling), or fetch the Pods
image from repositories (cf. Docker) [60].

Migration Delay on Services. Figure 8b depicts the impact
of service size over the migration delay for ten services (i.e.,
Services 1-10) with different sizes of Pods (from 22 MB to
316 MB). Even under a threshold of 30% (a smaller threshold
means more frequent migration), the average delay is no more
than 3.1 (seconds). In addition, Figure 8c measures the number
of migrations/hour for those ten different services under differ-
ent thresholds. As expected, a higher threshold value triggers
less frequent migrations and hence less delay to the services
(e.g., Services 1, 2, and 3 under 70% threshold). Finally,
Figure 8d shows both the number of migrations per hour and
the average delay under various threshold values, which both
decrease under larger values of thresholds. Although there
is an inherent trade-off between mitigation effectiveness and
migration delay, the impact on services is generally negligible
and, more importantly, non-disruptive.

21.9 52.3 90 124 154.2
Container Size (MB)

0

50

100

D
el

ay
 (s

)

K8S Rescheduling
Docker
CRIU

(a) Migration approaches comparison.

22 56 88 115147170202236260316
Service Size (MB)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
ve

ra
ge

 D
el

ay
 (s

) Threshold
30%
50%
70%

(b) Migration average delay/service.

1:222:563:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

2
4
6
8

10
12

N
um

be
r o

f M
ig

ra
tio

ns
(/h

ou
r)

Threshold
30% 50% 70%

(c) Number of migrations/hour.

10 20 30 40 50 60 70 80
Threshold (%)

0

10

20

N
um

be
r o

f M
ig

ra
tio

ns
(/h

ou
r)

0

2

4

A
ve

ra
ge

 D
el

ay
 (s

)Num. of Migrations
Average Delay

(d) Migration frequency and delay.

Fig. 8: Migration approaches comparison and cost analysis.

B. Optimization Effectiveness

To answer RQ2, we compare our P0P heuristic algo-
rithm with a standard optimization solution (genetic algorithm
(GA) [83]).

To evaluate the effectiveness of those two algorithms, we
measure the cluster threat reduction (Figure 9a) and the
number of migrations (Figure 9b) for 0.5% and 1% attack
data under different cluster sizes. As shown in those results,
P0P achieves a significant reduction in cluster threat, with an
average decrease of 95% and 90.3% for 0.5% and 1% attack
data, respectively. On the other hand, GA exhibits a reduction
in cluster threat by 76.3% and 70.8%, respectively.

We also compare the number of migrations required by
P0P and GA for reducing the cluster threat (Figure 9b). P0P
achieves more threat reduction while migrating less Pods
under all sizes of clusters. Note that the total number of
migrations is reasonable considering the fact that the average
migration delay per Pod is only about 0.87 (seconds) using
CRIU (Figure 8a).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

For further evaluation, we perform a stress test on both P0P
and GA to evaluate their effectiveness in reducing the cluster
threat under different percentages of attack data for a large
cluster of 1,000 Pods in 33 Nodes (Figure 9c) Overall, P0P
performs significantly better than GA (i.e., 20% more threat
reduction on average). Under larger percentages of attack data,
both algorithms struggle to minimize threat as more Pods are
exposed to attacks; however, P0P still outperforms GA.

In addition, we consider the case where tenants specify
a constraint on the total delay (i.e., the delay accumulated
over all migrations, see Section IV-A). Figure 9d shows the
results of employing P0P to reduce the cluster threat while
satisfying delay constraints. The results demonstrate that, for
smaller clusters, a stricter delay constraint does not make
a significant difference in threat reduction. However, when
the size of the cluster grows, more relaxed delay constraints
become necessary, as more Pods might need to be migrated in
a larger cluster (note the delay per Pod, which is what tenants
would experience, remains negligible, e.g., 0.87 (seconds)
using CRIU).

200/6 400/13 600/20 800/26 1000/33
Cluster Size (Pods/Nodes)

0

20

40

60

80

100

C
lu

st
er

 T
hr

ea
t R

ed
uc

tio
n

(%
)

(a) Threat reduction per cluster size.

200/6 400/13 600/20 800/26 1000/33
Cluster Size (Pods/Nodes)

0

10

20

30

40

50

N
um

be
r o

f M
ig

ra
tio

ns P0P 0.5% attack
GA 0.5% attack
P0P 1% attack
GA 1% attack

(b) # of migrations per cluster size.

0.5 1 5 10 15
% of Attack Data

0

50

100

C
lu

st
er

 T
hr

ea
t

R
ed

uc
tio

n
(%

) P0P
GA

(c) Attack data impact (1000 Pods/33
Nodes).

10 15 20 25 30
Delay Constraint (s)

0
20
40
60
80

100

C
lu

st
er

 T
hr

ea
t

R
ed

uc
tio

n
(%

) Pods/Nodes
50/4
150/6
450/12
950/22

(d) The delay/threat trade-off.

Fig. 9: Cluster threat reduction and delay comparison ((a), (b),
(c): no delay constraint).

C. ACE-WARP Effectiveness

To answer RQ3, we evaluate the effectiveness of ACE-
WARP in attack mitigation in terms of mitigating attack alerts
(i.e., true positives), non-attack alerts (i.e., false positives),
and missed attack alerts (i.e., false negatives). Table V shows
the numerical results for six of the simulated attacks. We
selected six out of the eight attack campaigns from our dataset
(Table IV) based on the simulation results which generated
more Falco alerts and diversity of observed MITRE tactics.
As a result, we considered these six attacks as a case study
in Table V.

For a lower threshold value (e.g., 30%), ACE-WARP is
more aggressive and hence results in a higher mitigated attack
alert rate (a lower missed attack alert rate) and a higher false
positive rate (Figure 10). Therefore, adopting such a lower

TABLE V: ACE-WARP effectiveness per attack and dataset.

Threshold
Average

per Attack
(%)

Total
Dataset

(%)
Attack ID

1 2 3 4 5 6
30% Mitigated

Attack
Alerts (%)

60 91 68 91 95 89 81 81
50% 0 85 40 77 84 79 61 61.95
70% 0 68 30 44 67 65 45.6 42.54
30% False

Positive(%)

32 39 39 42 77 38 39 35.1
50% 8 34 29 34 35 33 28 26
70% 8 24 18 23 31 28 22 18.29

threshold is generally preferable, especially considering that
the false positives have less impact under ACE-WARP due to
the non-disruptive nature of migration (i.e., they only result in
a slightly increased delay but no disruption to the services).

Although our solution might suffer from false negatives
(either due to Falco misdetection, or inaccurate risk predic-
tion), ACE-WARP is designed to catch long-lasting multi-step
attacks and is unlikely to miss all the attack steps.

D. Performance

To answer RQ4, we perform two experiments to evaluate the
execution time and CPU consumption. Figure 11a shows the
execution time for various cluster sizes, considering 0.5% and
1% attack data. The results demonstrate that P0P surpasses
GA in terms of performance. Specifically, P0P makes its
decision in less than a second even for a relatively large
cluster. Figure 11b shows the CPU consumption of ACE-
WARP running under three different thresholds. A lower
threshold triggers more frequent migrations resulting in higher
CPU usage on average (spikes in the graph). However, even
under a lower threshold (e.g., 30%), the CPU consumption
increases only by 20% compared to the cluster’s normal CPU
usage.

E. Adjustability to Tenants’ Requirements

To answer RQ5, this experiment studies how network slicing
can meet different services’ requirements, and how ACE-
WARP can be leveraged as an adjustable security solution.
Figure 12 shows both delay and threat reduction deviation
from the actual requirements for each service with and without
the network slicing. When network slicing is not considered,
one global threshold is set for all services, and therefore ACE-
WARP may sacrifices requirements (i.e., providing more or
less security/delay than what each service require). On the
other hand, when network slicing is considered, each slice
has its own threshold value instead of a global one. Hence,
each ACE-WARP agent (residing in a Node) performs the
migration for threat reduction based on its own threshold
value. Subsequently, ACE-WARP is able to fully meet the dif-
ferent requirements of services, as demonstrated by a close-to-
zero deviation from the tenant requirement. adjustable security
solution.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

1:22 2:56 3:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

0

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

Missed Attack Alert
False Positive
Mitigated Attack Alert

(a) Threshold = 30%.

1:22 2:56 3:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Missed Attack Alert
False Positive
Mitigated Attack Alert

(b) Threshold = 50%.

1:22 2:56 3:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Missed Attack Alert
False Positive
Mitigated Attack Alert

(c) Threshold = 70%.

Fig. 10: ACE-WARP effectiveness.

50/4
150/6

250/8
350/10

450/12
550/14

650/16
750/18

850/20
950/22

Cluster Size (Pods/Nodes)

0

50

100

Ex
ec

ut
io

n
Ti

m
e

(s
) P0P 1% attack

GA 1% attack
P0P 0.5% attack
GA 0.5% attack

(a) P0P Execution time.

0 1000 2000 3000 4000
Time (s)

0

50

100

A
dd

ed
 C

PU
 (%

) Threshold
30%
50%

70%
Normal

(b) ACE-WARP CPU consumption.

Fig. 11: Performance overhead.

#1 #2 #3 #4 #5 #6 #7 #8 #9#10
Service Number (#)

10
5
0
5

10
15
20
25
30

C
lu

st
er

 T
hr

ea
t R

ed
uc

tio
n

D
ev

ia
tio

n
(%

) Security Requirement
Network Slicing
No Network Slicing

(a) Threat reduction.

#1 #2 #3 #4 #5 #6 #7 #8 #9#10
Service Number (#)

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

D
el

ay
D

ev
ia

tio
n

(s
) Delay Requirement

Network Slicing
No Network Slicing

(b) Imposed delay.

Fig. 12: Effect of network slicing.

F. False Positives Impact

Since ACE-WARP acts based on the risk value calculated
for each alert, there is a possible scenario where attackers
generate fake alerts to purposefully trigger ACE-WARP. This
may happen in case the attacker gains knowledge of the
risk formula and ACE-WARP configuration (e.g., threshold
values). Therefore, an attacker might produce false positive
events to trigger migration and overwhelm the system. Note
that, even if the attacker compromises a Pod and triggers
endless migration, the malicious pods will not be spreading
over the cluster. This is because we designed our threat
reduction algorithm (i.e., P0P) in a way that isolates the source
of an attack.

To answer RQ6, Figure 13 illustrates that by varying the
percentage of false positives alerts, how ACE-WARP is still
able to reduce the threat by isolating the attack and keep the
other resources safe. As a result, in large cluster (i.e., 950 Pods
and 22 Nodes), ACE-WARP reduces the threat even with a
false positive rate up to 55%.

5 15 25 35 45 55 65
False Positive (%)

0
20
40
60
80

100

C
lu

st
er

 T
hr

ea
t

R
ed

uc
tio

n
(%

) Pods/Nodes
50/4
150/6
450/12
950/22

Fig. 13: Threat Reduction in case of Excessive False Positives

G. ACE-WARP Comparison with a Proactive MTD

To answer RQ7, we conduct a set of experiments (shown
in Figure 14) where we compare ACE-WARP’s overhead
and effectiveness with other MTD solutions (as reviewed
in Section I-A). In the following, we first discuss how we
implement a comparable MTD solution and then present our
comparison results.

ACE-WARP is a predictive solution which migrates the
Kubernetes Pods based on a received alert and a predicted risk
in order to proactively mitigate any potential attack. However,
proactive MTDs are time-based and non-attack dependent
migration. Thus, in order to fairly compare the effectiveness
of our approach with MTD solutions (i.e., reducing the threat),
we specifically implement a MTD approach that randomly
(independent of attacks) chooses Pod(s) to migrate at a regular
time interval. Figure 14 illustrates the experimental results in
terms of imposed average overhead, and effectiveness (cluster
threat reduction). As shown in Figure 14a, the average added
CPU by MTD is significantly higher than that of ACE-
WARP, due to its additional migrations (mainly in lower
time intervals). However, since ACE-WARP performs selective
migrations, it avoids the unnecessary overhead. Based on our
results in Figure 11b, for this experiment, we selected the
threshold of 30% for ACE-WARP as it is more sensitive
(performs more migrations). Note that, the ACE-WARP line
in Figure 14a is an indicator, and MTD can only perform one
migration every 1,000 seconds to have a similar CPU as ACE-
WARP which is giving enough time to attacker to proceed in
the cluster.

Figure 14b shows the cluster threat reduction for both ACE-
WARP and MTD under both 0.5%, and 1% attack data.
As observed, ACE-WARP significantly surpasses MTD for
reducing the cluster threat for both types of attack data. This

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

is because a larger number of migrations do not necessarily
reduce the cluster threat. Since the migrations in MTD are not
based on attack indicator and predicted risk, the MTD migrates
Pods randomly and do not necessarily move the riskiest Pods
in the cluster to reduce the attack surface. Although MTD
may prevent zero-day attacks as it performs migration on a
timely manner and zero-day attacks do not have indicator,
this prevention is not guaranteed due to its random selection
of Pods for migration, and not necessarily the attacked Pod.
However, ACE-WARP uses predictive model to forecast the
attacker’s potential next step, calculates risk, and select the
riskiest Pods using our P0P optimization algorithm. In contrast
to MTD, ACE-WARP imposes the migration delay only on the
Pods under attack. As a result, ACE-WARP is able to reduce
the cluster threat twice as much as the MTD with much less
overhead, and delay.

60 90 180 300 900 1800
Migration Time Interval (s)

0

50

100

Av
er

ag
e A

dd
ed

 C
PU

 (%
)

ACE-WARP

MTD

(a) Threat reduction.

200/6 400/13 600/20 800/26 1000/33
Cluster Size (Pods/Nodes)

0

20

40

60

80

100

C
lu

st
er

 T
hr

ea
t R

ed
uc

tio
n

(%
)

ACE-WARP - 0.5% attack
MTD - 0.5% attack- 300 (s) interval
ACE-WARP - 1% attack
MTD - 1% attack- 300 (s) interval

(b) Imposed delay.

Fig. 14: ACE-WARP overhead and effectiveness vs. MTD

VIII. CONCLUSION

We presented ACE-WARP, a cost-effective approach for
proactive non-disruptive attack mitigation in Kubernetes clus-
ters. We proposed a prediction model built out of MITRE
ATT&CK tactics, and utilized it to identify resources under
the risk of attack propagation. We then designed a non-
disruptive migration approach to optimally reduce the cluster
threat with minimum cost. To derive the most cost-effective
migration plan, we proposed an efficient heuristic optimization
algorithm. Finally, we leveraged network slicing to support
different tenant requirements within the same cluster.

Discussion. First, we clarify our comprehension of preventive
and proactive terms as the nature of ACE-WARP may overlap
in both terms. The high-level objective of ACE-WARP is
preventive in nature as we aim to prevent further damages
caused by attack propagation. On the other hand, the way
we achieve this objective is proactive in the sense that we
perform mitigation before real attacks occur, so our mitigation
is indeed independent of those real attacks (which explains
why we need non-disruptive mitigation options, since the real
attacks may or may not occur after the mitigation). In other
words, prevention is our goal, and proactive mitigation is our
methodology to achieve it. The main reason we do not use
the term preventive is to avoid the potential confusion that
our method is designed to prevent all attacks (e.g., it cannot
prevent the already detected attack).

Second, since ACE-WARP is deployed by the provider
as the security solution for the cluster, it already takes into
account all tenants’ workloads. Moreover, the optimization
algorithm ensures that a malicious Pod will not be detrimental
to any tenants regardless. We provide tenants the flexibility of
assigning relative importance (α and β) to the two objectives
(i.e., cluster threat and delay) based on their specific needs
(see Section IV-A). In practice, tenants can determine those
parameters based on their cluster sizes and delay constraints
(as specified in Service Level Agreements (SLAs)) by refer-
ring to our experimental results shown in Figure 9d, which
illustrate how the reduction in cluster threat will be affected
by the cluster size and delay constraints. For instance, tenants
with smaller clusters (50 Pods) can choose larger β values
(hence smaller α) since stricter delay constraints will not have
significant impact on threat reduction, whereas tenants with
larger clusters should choose smaller β values based on the
delays their SLAs can tolerate.
Limitations and Future Work. We are aware that ACE-
WARP utilizes Falco as a rule-based threat detection tool,
which lacks the capabilities to detect zero-day attacks or
attacks that mimic normal behavior. A future work is to
leverage other attack detection methods to cover more attacks.
Second, our prediction model is learned from a list of manually
simulated attack alerts, and therefore expanding the scope of
our model is another future direction. Third, ACE-WARP only
employs MITRE ATT&CK tactics for attack prediction, and
a future work is to explore alert text processing along with
MITRE ATT&CK techniques to derive novel attack indicators.
Finally, we also plan to explore other non-disruptive mitigation
methods to complement migration for better coverage.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments and suggestions. This work was supported by the
Natural Sciences and Engineering Research Council of Canada
and Ericsson Canada under the Industrial Research Chair in
SDN/NFV Security, and the Canada Foundation for Innovation
under JELF Project 38599.

REFERENCES

[1] “Kubernetes,” https://kubernetes.io/, [Accessed 30-3-2022].
[2] “Containers vs. VM,” https://learn.microsoft.com/en-us/virtualization/w

indowscontainers/about/containers-vs-vm, [Accessed 4-7-2023].
[3] “Container images vul.” https://sysdig.com/learn-cloud-native/containe

r-security/docker-vulnerability-scanning, [Accessed 4-7-2023].
[4] Y. Avrahami and S. Ben Hai, “Kubernetes privilege escalation: Container

escape == cluster admin?” in Black Hat USA, 2022.
[5] “Open Policy Agent/Gatekeeper,” Open Policy Agent/Gatekeeper https:

//open-policy-agent.github.io/gatekeeper/, [Accessed 10-3-2023].
[6] “Seccomp security profiles forDocker,” https://github.com/docker/dock

er/blob/master/docs/security/seccomp.md, [Accessed 4-7-2023].
[7] N. DeMarinis et al., “Sysfilter: Automated system call filtering for

commodity software,” in RAID, 2020.
[8] S. Ghavamnia et al., “Confine: Automated system call policy generation

for container attack surface reduction,” in RAID, 2020.
[9] L. Lei et al., “Speaker: Split-phase execution of application containers,”

in DIMVA. Springer, 2017.
[10] “Falco,” https://falco.org/, [Accessed 30-3-2022].
[11] “Falco alert dataset with APT attacks,” https://github.com/simabagheri

1/Falco-Alerts-Dataset-with-APT-attacks.
[12] “MITRE Att&CK,” https://attack.mitre.org/, [Accessed 30-3-2022].

https://kubernetes.io/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://sysdig.com/learn-cloud-native/container-security/docker-vulnerability-scanning
https://sysdig.com/learn-cloud-native/container-security/docker-vulnerability-scanning
https://open-policy-agent.github.io/gatekeeper/
https://open-policy-agent.github.io/gatekeeper/
https://github.com/docker/docker/blob/ master/docs/security/seccomp.md
https://github.com/docker/docker/blob/ master/docs/security/seccomp.md
https://falco.org/
https://github.com/simabagheri1/Falco-Alerts-Dataset-with-APT-attacks
https://github.com/simabagheri1/Falco-Alerts-Dataset-with-APT-attacks
https://attack.mitre.org/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 16

[13] “5G network slicing,” https://www.ericsson.com/en/network-slicing,
[Accessed 10-3-2023].

[14] S. Bagheri et al., “Warping the Defence Timeline: Non-disruptive
Proactive Attack Mitigation for Kubernetes Clusters,” in IEEE ICC,
2023.

[15] M. Patnaik et al., “Prolemus: A proactive learning-based mac protocol
against puea and ssdf attacks in energy constrained cognitive radio
networks,” TCCN, 2019.

[16] S. Majumdar et al., “Prosas: Proactive security auditing system for
clouds,” TDSC, 2021.

[17] T. Ma et al., “A mutation-enabled proactive defense against service-
oriented man-in-the-middle attack in kubernetes,” IEEE Trans. Comput.,
2023.

[18] C. Miranda et al., “A collaborative security framework for software-
defined wireless sensor networks,” IEEE Transactions on Information
Forensics and Security, 2020.

[19] H. Kermabon-Bobinnec et al., “Prospec: Proactive security policy en-
forcement for containers,” in ACM CODASPY, 2022.

[20] H. Liu et al., “Watermark-based proactive defense strategy design for
cyber-physical systems with unknown-but-bounded noises,” IEEE Trans.
Autom. Control., 2022.

[21] A. Alsaheel et al., “ATLAS: A sequence-based learning approach for
attack investigation,” in USENIX Security, 2021.

[22] W. Hassan et al., “Nodoze: Combatting threat alert fatigue with auto-
mated provenance triage,” in NDSS, 2019.

[23] X. Han et al., “Unicorn: Runtime provenance-based detector for ad-
vanced persistent threats,” in NDSS, 2020.

[24] “Sysdig,” Sysdig https://sysdig.com/, [Accessed 10-3-2023].
[25] C.-W. Tien et al., “Kubanomaly: anomaly detection for the docker

orchestration platform with neural network approaches,” Engineering
reports, 2019.

[26] Q. Du et al., “Anomaly detection and diagnosis for container-based
microservices with performance monitoring,” in ICA3PP, 2018.

[27] Z. Zou et al., “A docker container anomaly monitoring system based on
optimized isolation forest,” IEEE Trans. on Cloud Comput., 2019.

[28] “OpenStack Congress,” 2015. [Online]. Available: https://wiki.opensta
ck.org/wiki/Congress/

[29] S. Majumdar et al., “LeaPS: Learning-based proactive security auditing
for clouds,” in ESORICS. Springer, 2017.

[30] ——, “Proactive verification of security compliance for clouds through
pre-computation: Application to openstack,” in ESORICS, 2016.

[31] ——, “Learning probabilistic dependencies among events for proactive
security auditing in clouds,” in J. Comput. Secur., 2019.

[32] W. Hassan et al., “Tactical provenance analysis for endpoint detection
and response systems,” in IEEE SP, 2020.

[33] ——, “OmegaLog: High-fidelity attack investigation via transparent
multi-layer log analysis,” in NDSS, 2020.

[34] R. Yang et al., “UIScope: Accurate, instrumentation-free, and visible
attack investigation for GUI applications.” in NDSS, 2020.

[35] S. Milajerdi et al., “Holmes: real-time APT detection through correlation
of suspicious information flows,” in IEEE SP, 2019.

[36] A. De Domenico et al., “Optimal virtual network function deployment
for 5g network slicing in a hybrid cloud infrastructure,” TWC, 2020.

[37] S. Bagheri et al., “Dynamic firewall decomposition and composition in
the cloud,” TIFS, 2020.

[38] Z. Ding et al., “Kubernetes-oriented microservice placement with dy-
namic resource allocation,” IEEE Trans. on Cloud Comput., 2022.

[39] S. Arzo et al., “Study of virtual network function placement in 5g cloud
radio access network,” IEEE Trans. Netw. Serv., 2020.

[40] B. Tan et al., “A cooperative coevolution genetic programming hyper-
heuristics approach for on-line resource allocation in container-based
clouds,” IEEE Trans. on Cloud Comput., 2020.

[41] M. Kabir et al., “Joint routing and scheduling of mobile charging
infrastructure for v2v energy transfer,” IEEE Trans. Intell. Veh., 2021.

[42] F. Bari et al., “Orchestrating virtualized network functions,” IEEE Trans.
Netw. Serv., 2016.

[43] W. Attaoui et al., “Vnf and cnf placement in 5g: Recent advances and
future trends,” IEEE Trans. Netw. Serv., 2023.

[44] J.-H. Cho et al., “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Communications Surveys & Tutorials,
2020.

[45] H. Jin et al., “Dseom: A framework for dynamic security evaluation
and optimization of mtd in container-based cloud,” IEEE Transactions
on Dependable and Secure Computing, 2019.

[46] O. Stan et al., “Heuristic approach for countermeasure selection using
attack graphs,” in 2021 IEEE 34th Computer Security Foundations
Symposium (CSF), 2021.

[47] P. Nespoli et al., “Aisga: Multi-objective parameters optimization for
countermeasures selection through genetic algorithm,” in Proceedings
of the 16th International Conference on Availability, Reliability and
Security, 2021.

[48] “Docker.” [Online]. Available: https://www.docker.com/
[49] “CNCF Survey Report,” www.cncf.io, 2020, [Accessed 10-10-2022].
[50] “Free5GC,” https://www.free5gc.org/, [Accessed 30-3-2022].
[51] B. Martini et al., “Intent-based network slicing for sdn vertical services

with assurance: Context, design and preliminary experiments,” FGCS,
2023.

[52] “CVE-2021-3156,” https://nvd.nist.gov/vuln/detail/CVE-2021-3156/,
[Accessed 30-3-2022].

[53] “cgroup-vuk,” 2022. [Online]. Available: https://cve.mitre.org/cgi-bin/c
vekey.cgi?keyword=CVE-2022-0492+

[54] “apparmor-vul,” 2017. [Online]. Available: https://cve.mitre.org/cgi-bin
/cvekey.cgi?keyword=CVE-2017-6507

[55] “namespace-vul,” 2022. [Online]. Available: https://cve.mitre.org/cgi-b
in/cvekey.cgi?keyword=CVE-2022-0185

[56] I. Munro, “Efficient determination of the transitive closure of a directed
graph,” Information Processing Letters, 1971.

[57] F. Grandoni, “A note on the complexity of minimum dominating set,”
J. Discrete Algorithms, 2006.

[58] D. Heckerman, “A tutorial on learning with bayesian networks,” 2021.
[59] “mitre-cti.” [Online]. Available: https://attack.mitre.org/resources/learn

-more-about-attack/training/cti/
[60] “CRIU,” https://criu.org, [Accessed 30-3-2022].
[61] R. E. Bellman, Dynamic programming. Princeton university press,

2010.
[62] “CORDON/UNCORDON,” https://kubernetes.io/docs/tasks/administe

r-cluster/safely-drain-node/, [Accessed 10-3-2023].
[63] “Rsync,” https://linux.die.net/man/1/rsync, [Accessed 10-3-2023].
[64] “Falco Installation Tools,” https://falco.org/docs/getting-started/third-p

arty/install-tools/#helm, [Accessed 10-3-2023].
[65] “DaemonSet | Kuberetes,” Daemonset | Kubernetes. https://kubernetes

.io/docs/concepts/workloads/controllers/daemonset/, [Accessed 30-3-
2022].

[66] “Amazon ECS,” Amazon Elastic Container Service (ECS) https://aws.
amazon.com/ecs/, [Accessed 25-4-2023].

[67] “Microsoft Azure,” Microsoft Azure https://azure.microsoft.com/,
[Accessed 25-4-2023].

[68] “Sysdig SECURE,” Sysdig SECURE https://sysdig.com/products/secu
re/, [Accessed 25-4-2023].

[69] “Prometheus,” Prometheus https://prometheus.io/, [Accessed 25-4-
2023].

[70] “MITRE ATT&CK Azure,” https://www.microsoft.com/en-us/security
/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-sec
urity-controls/, [Accessed 25-4-2023].

[71] “AWS Security Stack Mappings,” AWS Security Stack Mappings. https:
//center-for-threat-informed-defense.github.io/security-stack-mappings/
AWS/README.html, [Accessed 30-3-2022].

[72] “Docker Swarm,” Docker Swarm https://docs.docker.com/engine/swarm
/, [Accessed 25-4-2023].

[73] “OpenShift,” OpenShift. https://docs.openshift.com/, [Accessed 30-3-
2022].

[74] “APT 3,” https://attack.mitre.org/groups/G0022/, [Accessed 30-3-2022].
[75] “Cedrick Ramos,” Spam campaigns with malware exploiting CVE-2017-

11882 spread in Australia and Japan. https://www.trendmicro.com/vin
fo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware
-exploiting-cve201711882-spread-in-australia-and-japan/, [Accessed
30-3-2022].

[76] “APT 29,” https://attack.mitre.org/groups/G0016/, [Accessed 30-3-
2022].

[77] “Escape attack,” Exploiting CVE-2021-3156. https://www.helpnetsecur
ity.com/2021/01/27/cve-2021-3156/, [Accessed 30-3-2022].

[78] “Crypto miner delivery,” Exploiting CVE-2017-10271. https://www.ma
ndiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overv
iew-techniques-used-post-exploitation-and/, [Accessed 30-3-2022].

[79] “Root data theft,” Kernel vulnerability exploiting CVE-2020-14386. ht
tps://nvd.nist.gov/vuln/detail/CVE-2020-14386/, [Accessed 30-3-2022].

[80] “Strategic web compromise,” https://www.fireeye.com/blog/threat-resea
rch/2015/07/second_adobe_flashz0.html/, [Accessed 30-3-2022].

[81] “Pierluigi Paganini,” Phishing campaigns target US government agencies
exploiting hacking team flaw CVE-2015- 5119. , [Accessed 30-3-2022].

[82] “CALDERA,” https://caldera.mitre.org/, [Accessed 30-3-2022].
[83] W. Banzhaf et al., Genetic programming: an introduction: on the

automatic evolution of computer programs and its applications. Morgan
Kaufmann Publishers Inc., 1998.

https://www.ericsson.com/en/network-slicing
https://sysdig.com/
https://wiki.openstack.org/wiki/Congress/
https://wiki.openstack.org/wiki/Congress/
https://www.docker.com/
www.cncf.io
https://www.free5gc.org/
https://nvd.nist.gov/vuln/detail/CVE-2021-3156/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2022-0492+
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2022-0492+
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2017-6507
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2017-6507
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2022-0185
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=CVE-2022-0185
https://attack.mitre.org/resources/learn-more-about-attack/training/cti/
https://attack.mitre.org/resources/learn-more-about-attack/training/cti/
https://criu.org
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://linux.die.net/man/1/rsync
https://falco.org/docs/getting-started/third-party/install-tools/#helm
https://falco.org/docs/getting-started/third-party/install-tools/#helm
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://azure.microsoft.com/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://prometheus.io/
https://www.microsoft.com/en-us/security/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-security-controls/
https://www.microsoft.com/en-us/security/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-security-controls/
https://www.microsoft.com/en-us/security/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-security-controls/
https://center-for-threat-informed-defense.github.io/security-stack-mappings/AWS/README.html
https://center-for-threat-informed-defense.github.io/security-stack-mappings/AWS/README.html
https://center-for-threat-informed-defense.github.io/security-stack-mappings/AWS/README.html
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.openshift.com/
https://attack.mitre.org/groups/G0022/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://attack.mitre.org/groups/G0016/
https://www.helpnetsecurity.com/2021/01/27/cve-2021-3156/
https://www.helpnetsecurity.com/2021/01/27/cve-2021-3156/
https://www.mandiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overview-techniques-used-post-exploitation-and/
https://www.mandiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overview-techniques-used-post-exploitation-and/
https://www.mandiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overview-techniques-used-post-exploitation-and/
https://nvd.nist.gov/vuln/detail/CVE-2020-14386/
https://nvd.nist.gov/vuln/detail/CVE-2020-14386/
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html/
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html/
https://securityaffairs.co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html/
https://caldera.mitre.org/

	Introduction
	Related Work

	Preliminaries
	Background
	Motivating Example
	Threat Model

	ACE-WARP Overview
	Offline Modeling
	Optimization Model Formulation
	Attack Prediction Model Building

	Runtime Detection and Mitigation
	Proactive Attack Prediction
	Non-disruptive Attack Mitigation
	Objective Optimization with P0P
	ACE-WARP with Network Slicing
	Mitigation

	Implementation
	Challenges
	Implementing and Integrating ACE-WARP with Kubernetes
	Auto-scaling ACE-WARP
	Portability to Other Cloud Platforms
	Building Dataset

	Evaluation
	Migration Cost
	Optimization Effectiveness
	ACE-WARP Effectiveness
	Performance
	Adjustability to Tenants' Requirements
	False Positives Impact
	ACE-WARP Comparison with a Proactive MTD

	Conclusion
	References

