
On Continuously Verifying Device-level Functional Integrity by
Monitoring Correlated Smart Home Devices

Shiva Sunar

Concordia University

Montréal, Canada

er.shiva.sunar@gmail.com

Paria Shirani

University of Ottawa

Ottawa, Canada

pshirani@uottawa.ca

Suryadipta Majumdar

Concordia University

Montréal, Canada

suryadipta.majumdar@concordia.ca

J. David Brown

Defence Research and Development Canada

Ottawa, Canada

DAVID.BROWN10@forces.gc.ca

ABSTRACT
The correct functionality (can also be called as functional integrity)
from a smart device is essential towards ensuring their safe and se-

cure operations. The functional integrity of a device can be defined

based on its correctness in sensing and actuating on the physical

environment as well as in reporting to the users. As evident from

several practical threats (e.g., event spoofing attacks, event masking

attacks, sensor failure, vulnerabilities, and misconfigurations), this

functional integrity of a device are often breached to cause severe se-

curity and safety impacts to their users. To make things worse, such

integrity breaches might stay stealthy (due to their non-existence

at the user-side) as well as be caused from both devices and apps

(due to their vulnerability and misconfigurations at both physical

and cyber spaces). Existing works mainly focus on detecting spe-

cific attacks without aiming at verifying functional integrity as a

security property. In this paper, we bridge this gap by proposing a

continuous approach for smart homes to verify functional integrity

at the device-level while monitoring correlated devices. Specifically,

our main idea is to learn the correlations among various sensors

and actuators in a smart environment, and continuously monitor

all the correlated devices to verify functional integrity breaches

against various real-world attacks, including spoofing, masking,

sensor failure, and device misconfigurations/vulnerabilities. We

implement our approach in the context of smart home and evaluate

its effectiveness (e.g., for sensors, R2 score of 0.98, and for actuators,

accuracy up to 100%) using a public dataset.

CCS CONCEPTS
• Security and privacy→ Systems security.

KEYWORDS
IoT security, smart home, correlated device, functional integrity

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the national govern-

ment of Canada. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0582-3/24/05. . . $15.00

https://doi.org/10.1145/3643833.3656132

ACM Reference Format:
Shiva Sunar, Paria Shirani, Suryadipta Majumdar, and J. David Brown. 2024.

On Continuously Verifying Device-level Functional Integrity by Monitoring

Correlated Smart Home Devices. In Proceedings of the 17th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’24), May
27–30, 2024, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3643833.3656132

1 INTRODUCTION
Smart devices with the promises of many automation opportunities

and convenience are being adopted on a large scale [22]. This grow-

ing expectations include the heavy reliance on the correctness of

those device functionalities to manage automation in various criti-

cal infrastructures (including intimate and personal environments

such as smart homes). However, due to many reasons (e.g., cheap

and unreliable sensors [11, 13], misconfigurations [22], vulnera-

bilities [6], attacks [35, 37, 40]), the so called functional integrity
of those IoT devices (i.e., correct measurement/action and correct

reporting; defined in Section 2) might be compromised. As a con-

sequence of such integrity breaches, the safety and security of

mass population might be affected as it involves life threatening

impacts (e.g., arson, intrusion, and other hazardous smart home

conditions) [6, 22, 37].

The existing works (e.g., [8, 9, 14, 20, 21, 26, 27, 37, 40, 46, 47, 50,

54]) in smart homes mostly focus on detecting specific attacks on

sensors and actuators in an IoT device. As a result, those works

might find some of the integrity breaches, but they do not focus

on continuously verifying the functional integrity in those devices

regardless of focusing on the specific causes of integrity breaches. A

detailed review of the related work is presented in Section 6. Specif-

ically, the prominent works on detecting event spoofing and event

masking attacks (e.g., [9–11, 13, 20, 37, 46, 47, 54]) in smart homes

might be used to verify actuator integrity mainly if it is breached

by those attacks. The other works (e.g., [8, 11, 13, 14, 21, 26, 27, 50])

on sensor failure detection might be used to verify sensor integrity

relying on either redundant devices (i.e., multiple instances of same

type of sensor) or dedicated devices (e.g., surveillance cameras).

However, for their different objectives, each of those existing works

either: (i) does not cover the entire functional integrity property (as

detailed in Section 2), (ii) does not provide a continuous verification

support, or (iii) is infeasible due to the overhead of deploying addi-

tional sensors and/or limited to specific attacks. Using the following

https://doi.org/10.1145/3643833.3656132
https://doi.org/10.1145/3643833.3656132

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Shiva Sunar, Paria Shirani, Suryadipta Majumdar, & J. David Brown

example use case, we further highlight the limitations of existing

works and provide the motivation for our proposed solution.

Motivating Example. A typical smart home scenario, including a

smart home environment with devices and apps (on the left) and

a remotely located homeowner (on the right), is depicted in the

upper part of Figure 1. Under normal operation (not shown in the

figure), the actual status (open) of a smart door is the same as its

reported status to the homeowner. However, due to a vulnerability

(e.g., CVE-2023-50124 [2]) in the door, the reported status is wrong

(close); as a result, that breaches the functional integrity of a smart

door (a.k.a. actuator integrity) and hides a burglary. Also, a smoke

detector wrongly reports its status (no_fire) during an arson (due

to an attack in fire app similar as in [15]), a thermostat wrongly

reads a temperature (23◦C, instead of 40◦C), due to a failure in

the thermostat [15]; both breach the functional integrity in those

sensors (a.k.a. sensor integrity), and might lead to an arson and

unauthorized intrusion, respectively, in a stealthy manner (i.e.,

not leading an obvious trace at the user end). Thus, the overall

functional integrity in smart home devices might be breached. Due

to the possibilities of such desperate situation, the homeowner

needs to verify the functional integrity in a smart home.

Actual Status
Door Open

Smoke Fire
Temp 23℃

Motion Yes

Smart Home Environment User-side Reporting

While Applying Existing Solutions for Integrity Verification:

Reported Status
Door Close

Smoke No_fire
Temp 40℃

Motion No

≠
! → Malfunctioning
 → Vulnerability

!

!

!

a) Deploying dedicated device
b) Deploying redundant sensors

1) Solutions on Sensor Failure Detection:
1 2
=?

2) Solutions on Event Verification:

-Costly
-Requiring manual inspection
-Limited to specific breaches
-Not supporting actuator integrity

 Malicious fire app [15]

-Specific to attacks
-Not supporting sensor integrity

Limitations:

How to
continuously verify

those integrity
breaches in my

smart home
devices?

CVE-2023-50124 [4]

 Faulty thermostat [15]

!

3) Simple Integration of 1) and 2):
-Not supporting continuous verification
-Not device-level verification
-Not supporting diverse environments

Figure 1: A motivating example showing functional integrity
breaches in a smart home and how existing solutions approach them

The lower part of Figure 1 shows the limitations of applying the

existing works for functional integrity verification as follows.

• Applying sensor failure detection solutions for sensor integrity: The
existing sensor failure detection approaches (e.g., [8, 11, 13, 14, 21,

26, 27, 50]) might be able to detect some sensor integrity breaches

(e.g., reporting no_fire status when there is an arson). However,

those solutions cannot detect the other sensor integrity breaches,

like reporting 23◦C when the actual temperature is 40◦C, as well
as any actuator integrity breaches. Also, they require either re-

dundant sensors that might incur additional cost and overhead

to the homeowner or a dedicated monitoring device, such as

CCTV, that requires manual verification from homeowners and

is limited to specific breaches (e.g., verified visually).

• Applying event verification solutions for actuator integrity: The
existing event verification solutions (e.g., [9, 10, 37]) might be

able to detect some actuator integrity breaches (e.g., reporting

close status when the door is actually open). However, they are

insufficient to verify sensor integrity breaches, such as reporting

no_fire when there is an arson by a smoke detector sensor and

wrong reading by a temperature sensor (23◦C instead of 40◦C).

• Simply integrating both existing approaches: Moreover, a simple

integration of those existing solutions is not enough, as there

exist more challenges (that are not addressed by those works),

including (i) the need of continuous verification (e.g., without

waiting for the actuators to report an action), (ii) conducting

device-level verification (where threats are stealthy enough not

to target an entire smart home behavior), and (iii) lack of ground

truth for validation in a single smart home, while risk of privacy

leak in case of aggregating the data from multiple smart homes.

In this paper, we address the aforementioned limitations and

propose an approach to continuously verifying the device-level

functional integrity while monitoring correlated smart home de-

vices. Specifically, we first identify the correlated devices in a smart

home and extract influential features for continuous monitoring

and integrity verification. Second, we learn selective features and

parameters for continuous monitoring as well as two specific mod-

els for predicting for functional integrity verification. Finally, we

continuously monitor selective features from a selective set of de-

vices and only based on an early symptom (i.e., an initial mismatch

from the integrity property) from monitoring, conduct functional

integrity verification using the learned predictive models for both

sensors and actuators. We implement our solution for a smart home

network using Home Assistant [7] platform, and evaluate its effec-

tiveness (e.g., accuracy and efficiency) using a public dataset.

Contributions. Our main contributions are as follows:

• As per our knowledge, this is the first framework to continuously

verifying functional integrity (i.e., sensing integrity, actuating

integrity, and reporting integrity) of a smart home device by

monitoring correlated devices to complement the existing works

that mostly focus on detecting specific attacks in a smart home.

• In designing this framework, we learn both sensor-sensor rela-

tionship (how a sensor can affect other sensors) and event-sensor

relationship (how an event from an actuator can affect other

sensors) so that we can monitor the correlated devices to offer

continuous verification of functional integrity in those devices.

• We implement and evaluate three variants (centralized, isolated,

and federated) of our solution in the context of smart home to fa-

cilitate its adaptation to diverse customized smart environments

(e.g., with no privacy issues among them, with privacy issues

among them, and with no similarity among them, respectively).

The evaluation results show the effectiveness of our solution (e.g.,

the accuracy of up to 100% for verifying actuating integrity, and

an R2 score of 0.98 for verifying sensing integrity).

2 PRELIMINARIES
This section provides necessary backgrounds and defines the func-

tional integrity property for IoT devices as well as our threat model.

SmartHomeNetworks.A typical smart home architecture [39, 56,

57] (shown in Figure 12 in Appendix) with various transducers are

connected to the smart hub either directly or through a cloud (using

various low powered and low bandwidth protocols, such as ZigBee,

Z-Wave, Thread, and Matter). Smart home transducers (which in-

clude both sensors and actuators) generate two types of data: sensor

readings and event notifications from their actuators. Both sensor

readings and event notifications are transmitted from devices to

the users through smart hubs (i.e., home automation systems, such

On Continuously Verifying Device-level Functional Integrity by Monitoring Correlated Smart Home Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

as Home Assistant [7], openHAB [1], and OpenMotics [3]); from

where this work collects the data (as described in Section 3), like

most other related works (e.g., Maverick [35] and ARGUS [40]).

Relationships between Smart Home Devices. Our preliminary

study (in Figure 13 in Appendix) shows that there is a relationship

between the outputs of IoT devices; which indicates that any state of

the physical environment (either reported as a sensor reading or an

event by an actuator) might have effects on the sensor readings of

other devices that are situated at the same environment. Figure 13

shows an example where door-opening and door-closing events

have direct impacts on nearby accelerometer, gyroscope, and mag-

netometer sensors and less or no impact on pressure and humidity

sensors. In our methodology (in Section 3), we automatically find

the correlations between smart home devices and then leverage

those correlated devices to verify their functional integrity.

Functional Integrity for Smart Home Devices.We define the

functional integrity property for an IoT device based on the defi-

nitions in NIST 8228 [44]. The functional integrity property is to

ensure the correctness of an IoT device in performing its intended

functions. A device can be defined as an embedded system that con-

sists of a set of sensors and actuators. The functions of a device are
dictated by its sensors and actuators. Therefore, we divide the func-

tional integrity property of a device in two following categories.

(1) Sensor Functional Integrity: The sensor integrity is to check

the correctness of sensor functionality (i.e., sensing or measur-

ing various aspects of a physical environment and converting

it to a digital signal). This integrity includes both the (a) cor-
rectness in sensing a physical environment (e.g., a temperature

sensor must sense temparature accurately, where “accurately”

can be defined with some tolerance as shown in Section 4) and

(b) correctness in reporting sensor readings to the users.
(2) Actuator Functional Integrity: The actuator integrity is to

check the correctness of actuator functionality (i.e., converting

a digital signal to various physical actions, such as emitting

light, producing sound, locking a door). This integrity includes

both the (a) correctness in actuating on a physical environment
(following two rules: i) an actuator performs only the action

that a command asks for, and ii) an actuator only performs an

action when there is a command) and (b) correctness in reporting
an event to the users.

We consider these integrity properties in our threat model.

Threat Model. This work primarily aims at continuously verifying

functional integrity (as defined above) in smart home devices. By

continuous, it means that this work does not only rely on the status

reports from the sensors and actuators but also continuously mon-

itor correlated sensors to verify any integrity breach in between

reports. Even though our work is not to detect specific attacks

(e.g., spoofing [9, 37], and masking [10, 37]), we can find a func-

tional integrity breach resulting from those attacks (in addition to

misconfigurations and vulnerabilities). For verification, we rely on

the availability of the device data from the smart hubs (i.e., home

automation systems, such as Home Assistant [7], openHAB [1],

and OpenMotics [3]) that support multi-vendor IoT products. Our

out-of-scope threats include the threats that might affect the cor-

relations between the devices and we assume that attackers main

intention is to breach the functional integrity of the devices and

not to alter the correlation between them (where all other existing

works also fail). Like other related works (e.g., [9, 10, 20]), we cover

the scenarios where the attacker wants to remain stealthy from

the users and do not take over all the devices (as in those other

cases, even though an automated solution might be harder to offer,

the attack would be more noticeable by a user) Additionally, any

threats at the cyberspace (e.g., modifying the sensor and actuator

data in transit or through a smart app) is beyond our scope and can

be tacked by the solutions (e.g., [40, 57]) at cyberspace.

3 METHODOLOGY
This section describes our proposed methodology.

3.1 Overview
As shown in Figure 2, our methodology for continuously verifying

functional integrity in IoT devices consists of three major steps,

namely, identifying correlated devices, learning, and monitoring and
verifying. First, we identify a set of correlated device for each sen-

sor/actuator measurement/action, and extracts statistical features

for each actuator action reported by a device using the sensor read-

ings of its correlated devices (detailed in Section 3.2). Second, we

learn for monitoring (not shown in Figure 2) as well as for verifica-

tion by learning two predictive models for the sensor-sensor rela-

tionship (that captures how one sensor reading impacts the other

correlated sensors) and event-sensor relationship (that captures

how one event in a device impacts the other correlated sensors), re-

spectively, (detailed in Section 3.3). Third, we continuously monitor

correlated devices, and based on an initial mismatch from the in-

tegrity property, conduct functional integrity verification using the

learned predictive models for both sensors and actuators (detailed

in Section 3.4). We provide more details on each step as follows.

3.2 Correlated Device Identification
This step is to first identify correlated devices in a smart home and

then extract the most influential features from those correlated

devices to facilitate the following steps (in Sections 3.3 and 3.4).

Identifying Correlations among Devices. In this work, we first

identify the correlation among the devices in a smart home so that

later we can leverage the most correlated devices during our contin-

uous verification step to keep it efficient without affecting accuracy.

This step aims to find the sensors that (i) have correlation with other

sensor readings, and (ii) are more affected by an actuator event.

More specifically, in this step (as shown on the top left in Figure 2),

we first collect sensor readings and actuator events for a period of

time (similarly as in Figure 12). Second, for each target device, we

calculate the correlation between a given target device and all other

sensors. To that end, for sensor readings (which are continuous

data), we leverage the Pearson correlation coefficients [38] and for

actuator notifications (which are discrete events), we use the Point-

biserial correlation coefficient [29]. Third, we consider all sensors

that have a correlation coefficient higher than a threshold value

(which is chosen by our evaluation in Section 4) as the correlated

sensors to a target device. Finally, we identify a set of correlated

sensors for each given target sensor and actuator event.

More formally: let 𝑆𝑠𝑒𝑛𝑠 = {𝑆1, 𝑆2, . . . , 𝑆𝑘 } be a set of sensor

readings and 𝑆𝑒𝑣𝑡𝑠 = {𝑆𝐸1, . . . , 𝑆𝐸𝑚} be a set of actuator events.
𝐶𝑆𝑆𝐸 and 𝐶𝑆𝑆𝑇 contain a set of sensors that are correlated with

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Shiva Sunar, Paria Shirani, Suryadipta Majumdar, & J. David Brown

 ,

Correlated Device Identification
Target sensor

Correlated Sensors

Learning for Sensor Verification

Target sensor

 Predictive LSTM
model for sensor

No

|Reported Predicted |
 tolerance ?

Sensor Integrity Verification

Incorrect Sensor Reading

Learning for Actuator Verification

Predictive NN model for
Event of using

Features () of
during the event

Feature Extraction

Reported

Ensembled model for
Event sensor

Predicted NoReported Event=
Predicted Event?

Actuator Integrity Verification

Yes
No

Reported Event=
No Event?

Incorrect Event
(Spoofed)

Incorrect Event
(Masked)

Correct Event

Correlated Device Identification

En
se

m
bl

er

Monitoring and Verification

Yes Yes

Monitoring Correlated Devices

Learning

Smart home 2

Smart home N

Smart home 1

, ,
Reported , Reported

Reported

Predicted

Events

Sensor readings

An event and a group of sensors

Sensor Reading Extraction

Correct Sensor Reading

Target
actuator

Correlated Sensors

Figure 2: An overview of our proposed system. 𝑆𝑇 represents sensors, 𝑆𝐸 represents actuators, and 𝑒𝑖 represents an event.

an actuator or a sensor, respectively. For a given target sensor,

𝑆𝑇 and ∀𝑆𝑖 ∈ {𝑆𝑠𝑒𝑛𝑠 − 𝑆𝑇 }, 𝑆𝑖 is correlated with 𝑆𝑇 , if the abso-

lute Pearson coefficients, 𝜌1 (𝑆𝑇 , 𝑆𝑖), is greater than a threshold

value (𝜌𝜃1), 𝜌1 (𝑆𝑇 , 𝑆𝑖) ≥ 𝜌𝜃1. Similarly, for a given target actua-

tor, 𝑆𝐸 and ∀𝑆𝑖 ∈ {𝑆𝑠𝑒𝑛𝑠 }, 𝑆𝑖 is correlated with 𝑆𝐸 , if the Point-

biserial coefficient, 𝜌2 (𝑆𝐸 , 𝑆𝑖), is greater than a threshold value

(𝜌𝜃2), 𝜌2 (𝑆𝐸 , 𝑆𝑖) ≥ 𝜌𝜃2.
Extracting Features. After identifying correlated devices, it is also
important to find and extract most influential features that might

provide the best representation of a correlated device during the

learning step (in Section 3.3), as the effects of different events on a

correlated sensor can be different. For example, the reading of mag-

netometer has opposite effects on two door events: increasing for

door-opening at 𝑡𝑜 and decreasing for door-closing at 𝑡𝑐 , as shown

in Figure 3. This difference in effect can be used to differentiate and

identify various event types. To capture and quantify the effects of

an event type on its correlated sensors, we extract various statisti-

cal features/metrics, including minimum, maximum, mean, median,
standard deviation, skewness, kurtosis and difference (i.e., differences
between the first and last data points of the event window).

To extract the features representative of a target event from its

correlated sensor readings, we first consider two timestamps: event
timestamp 𝑡𝑒 , which indicates that an event 𝑒 might have occurred

and non-event timestamp 𝑡𝑛𝑒 , which means no event might have

occurred at a given timestamp. Then, we select two time periods:

the period before 𝑡𝑒 is called pre-event window, and the period after

𝑡𝑒 is called post-event window. The duration of these periods is

obtained through our empirical studies as evaluated in Appendix.

Finally, we extract the features for these two periods.

tne−w tne tne+w tO−w tO tO+w tC−w tC tC+w
Time

0

2

4

6

8

10

12

14

Se
ns
or

Va
lu
e

Figure 3: The sensor readings of a magnetometer correlated with
door event during door-opening (𝑡𝑜) and door-closing (𝑡𝑐) events
is different; it increases during door-opening and vice versa. The 𝑡𝑛𝑒 ,
and𝑤 represent a non-event timestamp and an event window length.

Example 3.1. Figure 3 shows the magnetometer sensor readings

during two events occurring at event timestamps, 𝑡𝑜 and 𝑡𝑐 , where

the pre-event window (e.g., 𝑡𝑜 −𝑤 , 𝑡𝑜) is indicated by the area with

light-blue shade, while the post-event window (e.g., 𝑡𝑜 + 𝑤 , 𝑡𝑜) is
shown by the area with light-green shade, and 𝑤 represents the

event window length. Thus, for both pre/post event windows, we

extract eight statistical features from the sensor readings.

More formally: Let 𝑆𝐸 ∈ 𝑆𝑒𝑣𝑡𝑠 be an event actuator and 𝑡𝑒 be

the timestamp for an event. Let 𝑆𝑖 ∈ 𝑆𝑠𝑒𝑛𝑠 be one of 𝑆𝐸 corre-

lated sensors, which is affected by 𝑆𝐸 ’s event during a period of

On Continuously Verifying Device-level Functional Integrity by Monitoring Correlated Smart Home Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

𝑤𝑖 . The 𝑤𝑖 is called the event window length of sensor 𝑆𝑖 . The

pre-event window (𝑇 −) and the post-event window (𝑇 +) at a given
timestamp 𝑡𝑒 are defined as [𝑡𝑒 −𝑤𝑖 , 𝑡𝑒] and [𝑡𝑒 , 𝑡𝑒 +𝑤𝑖], respec-
tively. Let function, 𝐹𝑆𝐸 ,𝑆𝑖 (𝑇) = {𝑚𝑖𝑛(),𝑚𝑎𝑥 (),𝑚𝑒𝑎𝑛(),𝑚𝑒𝑑𝑖𝑎𝑛(),
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(), 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (), 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (), 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ()}, ex-
tracts the features during an event time window 𝑇 . The final set of

features is calculated by 𝐹𝑆𝐸 ,𝑆𝑖 (𝑤𝑖) = 𝐹𝑆𝐸 ,𝑆𝑖 (𝑇 −) ∥ 𝐹𝑆𝐸 ,𝑆𝑖 (𝑇 +).

3.3 Learning
This section is to learn prediction models for both verifying func-

tional integrity and continuously monitoring correlated sensors.

Learning for Verification. For verifying functional integrity using
correlated devices, it is essential to predict sensor values or actuator

events from other sensors. Therefore, in the following, we build

two models (specifically trained for sensor and actuator verification,

respectively) that will later be used for such predictions.

(i) Learning for Sensor Verification: This step finds how the readings

from a specific sensor are related to other sensors’ readings and how

that relationship can be modeled to predict a sensor reading from

others. For this purpose, we use the correlated devices identified

in the previous step and create a model, 𝑀𝑆𝑇 , which predicts the

value of a target sensor 𝑆𝑇 . Specifically, we train a long short-

term memory (LSTM) model using all of its correlated sensors (𝑆𝑖)

obtained in Section 3.2. The reason behind using the LSTMmodel is

that the sensor reading data is a time-series data and LSTM models

are known to work well on time-series data, which can predict

future values based on previous sequential data. Investigating other

models (e.g., Transformers) is the subject of our future work.

(ii) Learning for Actuator Verification: This step finds how an action

(a.k.a. event) from a specific actuator affects other sensors’ readings

and how that relationship can be modeled to predict an event from

others. For this purpose, using the extracted features, 𝐹𝑆𝐸 ,𝑆𝑖 (𝑤𝑖), in
the previous step, we create a model for each correlated sensor and

then ensemble them to obtain a single model to predict an event

from a specific actuator. To learn the relationships between the

events (𝑒) of an actuator, 𝑆𝐸 , and each of its correlated sensor 𝑆𝑖 , a

model𝑀𝐹𝑖 is built for each 𝑆𝑖 ∈ 𝐶𝑆𝑆𝐸 (as defined in Section 3.2). A

model𝑀𝐹𝑖 is trained to predict the events of 𝑆𝐸 using the features

generated with the data of sensor 𝑆𝑖 for that event and its accuracy

(𝑎𝑖) is measured. For this purpose, we use feed-forward neural

network (FFNN) since our input is a set of features and we aim to

keep our learning overhead lightweight. Afterwards, the models

with an accuracy of more than a threshold value (𝑎𝜃) are selected

for the ensemble learning. Based on our analysis, we consider the

threshold values of 𝑎𝜃 = 0.5. On these selected models, we apply

the weighted majority voting ensemble (WMVE) method [30] to

combine them and generate an ensemble model (𝑀𝐸). As such, the

weight (𝛼𝑖) of each model 𝑀𝑖 is calculated as 𝛼𝑖 = log[𝑎𝑖
1−𝑎𝑖] [30].

Then, the ensemble prediction (𝑝𝑒𝑛𝑠) [30] is calculated as follows:

𝑝𝑒𝑛𝑠 =

1 , 𝑖 𝑓

(∑
𝑤𝑝𝑟𝑒𝑑=1 −

∑
𝑤𝑝𝑟𝑒𝑑=0

)
> 0

0 , 𝑖 𝑓

(∑
𝑤𝑝𝑟𝑒𝑑=1 −

∑
𝑤𝑝𝑟𝑒𝑑=0

)
≤ 0

where

∑
𝑤𝑝𝑟𝑒𝑑=𝑥 is the sum of weights of all the models that pre-

dicted 𝑥 ∈ {0, 1} for the event. The ensemble learning is described

in Algorithm 1 in Appendix.

Depending on different smart home (and beyond smart home)

setups (as discussed in Section 5), these learning steps can be imple-

mented using different methods such as isolated, centralized and

federated learning (as evaluated in Section 4).

Learning for Monitoring. To enable continuous monitoring of

the correlated devices in the next step, the above-mentioned models

are not sufficient, as they take more time to predict and continuous

monitoring demands quick response in indicating an early suspect

of change in sensor readings and actuator events. To address this

issue, we alternatively classify event and non-event timestamps to

quickly identify an event timestamp for which later we conduct

verification (in Section 3.4). Therefore, in the following, we learn to

answer the following two questions: which selective feature(s) from

which specific sensor(s) are to be monitored and what would be the

threshold value of the selected feature for timestamp classification.

(i) Selecting Devices and Features for Monitoring: To detect if an

event of a target actuator (𝑆𝐸) has happened at a certain timestamp

(𝑡), we need a function that takes the event window length of a

correlated sensor at timestamp 𝑡 and detects if 𝑡 is an event or non-

event timestamp. Hence since an event may have several correlated

sensors, first we need to select one of them. As such, we consider

a correlated sensor with the highest accuracy to predict its event

timestamp. More specifically, the event detecting sensor, 𝑆𝑒𝑑 , returns
a sensor 𝑆𝑖 ∈ 𝐶𝑆𝑆𝐸 , where 𝑆𝑖 = max𝑆𝑖 (𝛼𝑖).

To later monitor a change in an actuator through sensor readings

at a certain timestamp, we need a functionwith as few computations

as possible to keep the process lightweight, as this step is performed

very frequently. Thus, after identifying the event detecting sensor,
we aim to find the best function from several candidate functions

(e.g., max(), min()) to identify the type of a given timestamp (i.e.,

event or non-event). To this end, we first evaluate the Kernel Density
Estimation (KDE) [41] for each of the candidate functions for the

sets of event timestamps (𝑡𝑒) and non-event timestamps (𝑡𝑛𝑒) using

the sensor readings of the event detecting sensor (𝑆𝑒𝑑). We further

confirm the results by their high Kolmogorov-Smirnov Score (KS).

Then, we choose the most discriminating functions between the

event and non-event timestamps to later use it during our device

monitoring and verification step. More specifically, the event detec-
tion function, 𝑓𝑒𝑑 , returns the best function 𝑓𝑖 ∈ {𝑚𝑖𝑛(), 𝑚𝑎𝑥 (),
𝑚𝑒𝑎𝑛(), 𝑚𝑒𝑑𝑖𝑎𝑛(), 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(), 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (), 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (),
𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ()}, where 𝑓𝑖 = max𝑓𝑖 (𝐾𝑆𝑛 (𝐾𝐷𝐸 (𝑛))), and 𝑛 is a data-

point in the event window length.

Example 3.2. We collect a set of data from a correlated sensor

and calculate the KDE of each candidate functions within its event
window length for the sets of event timestamps and non-event

timestamps. As shown in Figure 4, the standard_deviation() and
difference() are the most discriminating functions between the event

and non-event timestamps. This is also confirmed by their high

Kolmogorov-Smirnov Score of 0.96, which determines the difference

or similarity of distributions of two random variables. Finally, we

select the difference as the event detection function (𝑓𝑒𝑑) due to its

lower time complexity, i.e., O(1) for the difference compared to

O(𝑛) for the standard deviation.

(ii) Finding Threshold Value for Monitoring: This step is to select a

threshold value for the above-identified feature to classify event

and non-event timestamps. We observe that when there is no event

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Shiva Sunar, Paria Shirani, Suryadipta Majumdar, & J. David Brown

−10 0 10
minimum with K-S 0.46

0.0

0.5

−10 0 10
maximum with K-S 0.8

0.00

0.25

0.50

−10 0 10
mean with K-S 0.47

0.0

0.5

−10 0 10
median with K-S 0.47

0.0

0.5

0 2 4 6
standard_deviation with K-S 0.96

0

1

2

−2 0 2 4
skewness with K-S 0.81

0

1

2

0 5 10
kurtosis with K-S 0.85

0.0

0.5

0 5 10
difference with K-S 0.96

0.00

0.25

0.50

Ke
rn

el
 D

en
sit

y
Es

tim
at

io
n

Values of the function

Event Non-Event

Figure 4: Kernel density estimation of each candidate function
for “event” and “non-event” timestamps and their corresponding
Kolmogorov-Smirnov scores. The standard_deviation and difference
functions have the most non-overlapping distributions.

occurring in the event source (𝑆𝑇), the readings of the event de-

tecting sensor (𝑆𝑒𝑑) is uniform, which means that the average of

the difference() function for non-event timestamps (𝜇𝑛𝑒) within the

event window length will be close to zero. However, the value of

sensor data changes abruptly when an event occurs, which means

that the average of the difference() function for event timestamps

(𝜇𝑒) is much higher than zero. These observations can be seen in

Figure 4. Thus, during our monitoring step, we use the mean of

𝜇𝑛𝑒 and 𝜇𝑒 to separate the event and non-event timestamps. More

formally: Let 𝑆𝑇 be a target actuator with event window length

of 𝑤 , 𝑆𝑒𝑑 be its event detecting sensor, and 𝑓𝑒𝑑 be the event de-
tection function. For each timestamp 𝑡𝑛𝑒 , 𝑡𝑒 ∈ 𝑤 , 𝜇𝑛𝑒 = average of

𝑓𝑒𝑑 (𝑡𝑛𝑒) and 𝜇𝑒 = average of 𝑓𝑒𝑑 (𝑡𝑒). Thus, the threshold value to

classify if a timestamp is an event or non-event of 𝑆𝑇 is calculated

as 𝜇𝑆𝑇 =
𝜇𝑛𝑒+𝜇𝑒

2
.

3.4 Monitoring and Verification
This section is to continuously monitor the correlated devices and

based on monitoring result to verify functional integrity in a device.

Monitoring Correlated Devices. To detect an indication of a

change in an actuator event (𝑆𝐸), we continuously monitor its de-

tecting sensor (𝑆𝑒𝑑) within the even window length𝑤 using sliding

window techniques. At each timestamp, 𝑡 , (depending on the re-

porting interval for each 𝑆𝑒𝑑 , as discussed in Section 5), the event

detection function (𝑓𝑒𝑑) is computed for 𝑆𝑒𝑑 (i.e., 𝑓𝑒𝑑 (𝑆𝑒𝑑 (𝑡)). If its
value is greater than 𝜇𝑆𝐸 (i.e., the 𝜇𝑒 specific to event 𝑆𝐸), then this

change is considered as a potential integrity breach in actuator 𝑆𝐸
within period of [𝑡 −𝑤, 𝑡 +𝑤], and 𝑡 is considered as an indication

of an integrity breach. As a result, we conduct a verification for

timestamp 𝑡 conducting the following step.

Verifying Functional Integrity. In the following, we describe

both sensor and actuator integrity verification steps.

(i) Verifying Sensor Integrity: The value of the sensor readings of
a given target sensor is predicted using the sensor readings of its

correlated sensors. The predicted value and the reported value of the

target sensor are compared and if their absolute difference is more

than a threshold value (𝛽) then the reported value is considered to

be incorrect. For each sensor, the value of threshold 𝛽𝑖 is adjusted

on the basis of how much error a user may tolerate and should

be tuned as per the individual use cases as described in Section 4.

More formally: Let 𝑆𝑇 be a target sensor and 𝐶𝑆𝑆𝑇 be a set of its

correlated sensors. Let 𝑆𝑇,𝑝𝑟𝑒𝑑 ← 𝑃𝑒𝑛𝑠 (𝐶𝑆𝑆𝑇) be the predicted

value through our model, and 𝑆𝑇,𝑟𝑒𝑝 be the reported value of 𝑆𝑇 . If

|𝑆𝑇,𝑝𝑟𝑒𝑑 − 𝑆𝑇,𝑟𝑒𝑝 | > 𝛽 then the reported value is considered to be

incorrect, where 𝛽 is a predefined tolerance threshold value.

Example 3.3. As shown in Figure 5, there are four sensors, mag-
netometer, light sensor, temperature sensor and pressure sensor

(noted as 𝑆𝑠𝑒𝑛𝑠={𝑚𝑎𝑔, 𝑙𝑖𝑔ℎ𝑡 , 𝑡𝑒𝑚𝑝 , 𝑝𝑟𝑒𝑠𝑠}) and we aim to predict

the value of pressure sensor (meaning 𝑆𝑇 = 𝑆𝑝𝑟𝑒𝑠𝑠). First, we cal-

culate the correlation between pressure and each of the remaining

sensors as follows: 𝜌 (𝑝𝑟𝑒𝑠𝑠,𝑚𝑎𝑔) = 0.6, 𝜌 (𝑝𝑟𝑒𝑠𝑠, 𝑙𝑖𝑔ℎ𝑡) = 0.7, and

𝜌 (𝑝𝑟𝑒𝑠𝑠, 𝑡𝑒𝑚𝑝) = 0.8. Suppose that the threshold value of 𝜌𝜃 to

choose the correlated sensor is 0.65. Then, the set of its corre-

lated sensors are light and temperature: 𝐶𝑆𝑝𝑟𝑒𝑠𝑠 = {𝑙𝑖𝑔ℎ𝑡, 𝑡𝑒𝑚𝑝}.
Thus, the ML model is trained using correlated sensors 𝐶𝑆𝑝𝑟𝑒𝑠𝑠 =

{𝑙𝑖𝑔ℎ𝑡, 𝑡𝑒𝑚𝑝} as input and then it is used to predict 𝑝𝑟𝑒𝑠𝑠 as output

(𝑆𝑇,𝑝𝑟𝑒𝑑). If |𝑆𝑇,𝑝𝑟𝑒𝑑 − 𝑆𝑇,𝑟𝑒𝑝 | > 𝛽 , then the reported value (𝑆𝑇,𝑟𝑒𝑝)

is considered to be incorrect.

 =?

Regression Model
for Pressure

M
ag

ne
to

m
et

er
Li

gh
t

Te
m

pe
ra

tu
re

Pr
es

su
re

Reported pressure

Predicted pressure

Figure 5: An example for the prediction of pressure sensor readings
utilizing its correlated sensors and the regression model. Only corre-
lated light and temperature sensors are used for regression.

(ii) Verifying Actuator Integrity: We describe the two steps for event

verification as follows.

Predicting Events from Timestamp. This step is to predict the oc-

currence of an event at a given timestamp through its correlated

sensors. The timestamp (𝑡) is either obtained from a reported event

or from the previous monitoring step for unreported events. To this

end, the set of feature 𝐹𝑆𝐸 ,𝑆𝑖 (𝑤𝑖) are extracted for each correlated

sensor 𝑆𝑖 and then are fed into their corresponding models (𝑀𝑖)

which in turn produces their corresponding predictions (𝑝𝑖). Ob-

tained prediction results are combined as described in Section 3.3

to produce ensemble prediction (𝑝𝑒𝑛𝑠).

Example 3.4. Suppose there are three sensors, accelerome-
ter, magnetometer and gyroscope, with their respective models

{𝑀𝑎𝑐𝑐 , 𝑀𝑚𝑎𝑔, 𝑀𝑔𝑦𝑟𝑜 } to predict the door event (𝑒) with accuracy

{𝑎𝑎𝑐𝑐 = 0.7, 𝑎𝑚𝑎𝑔 = 0.8, and 𝑎𝑔𝑦𝑟𝑜 = 0.9} and their predic-

tions {𝑝𝑎𝑐𝑐 = 1, 𝑝𝑚𝑎𝑔 = 0, and 𝑝𝑔𝑦𝑟𝑜 = 1}. The weight of each

model is calculated by 𝛼𝑖 = log[𝑎𝑖
1−𝑎𝑖]: 𝛼𝑎𝑐𝑐 = 0.847, 𝛼𝑚𝑎𝑔 =

1.38 and 𝛼𝑔𝑦𝑟𝑜 = 2.19. We then calculate the sum of weights,∑
𝑤𝑝𝑟𝑒𝑑=1 −

∑
𝑤𝑝𝑟𝑒𝑑=0 = 0.847 − 1.386 + 2.197 = 1.658 > 0. The

ensemble prediction (𝑝𝑒𝑛𝑠) is one, meaning that the predicted event

(𝐸𝑝𝑟𝑒𝑑) is door-open.

Matching Reported and Predicted Events. The predicted event (𝐸𝑝𝑟𝑒𝑑)
is compared with the reported event (𝐸𝑟𝑒𝑝). If both indicate the

same event, then the reported event is considered as correct. Oth-
erwise, the reported event is flagged as incorrect. This incorrect
reporting of an event is later further analyzed to decide their spe-

cific integrity breach (as explained in the following subsection).

On Continuously Verifying Device-level Functional Integrity by Monitoring Correlated Smart Home Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Specifically, we utilize our defined event/non-event timestamps

for this purpose. If 𝐸𝑟𝑒𝑝 indicates no event and 𝐸𝑝𝑟𝑒𝑑 indicates

an event, then the predicted event (𝐸𝑝𝑟𝑒𝑑) is considered to be the

breach of correct reporting property, whereas if 𝐸𝑟𝑒𝑝 = 𝑠𝑜𝑚𝑒_𝑒𝑣𝑒𝑛𝑡

but 𝐸𝑝𝑟𝑒𝑑 = 𝑛𝑜_𝑒𝑣𝑒𝑛𝑡 then the 𝐸𝑟𝑒𝑝 is considered to be a breach of

correct actuating property. Further by matching with the command,

we verify if it is a breach of exact command and only by commmand
sub-properties.

Verification Results. Table 1 summarizes how our solution veri-

fies the functional integrity property (covering all sub-properties)

defined in our threat model (in Section 2). Specifically:

• Sensor functional integrity: This property is ensured by verify-

ing two sub-properties (correct sensing and correct reporting) for
sensors. The correct sensing sub-property might be breached by

sensor failure (e.g., [11, 13]) and is verified by following the spe-

cific steps of our methodology as shown in the table. Also, the

correct reporting sub-property might be breached by masking

and spoofing sensor readings (e.g., [10, 20, 37, 57]) in addition to

sensor failure and is verified by the steps in the table (where the

step in parenthesis is only needed for masking-like breaches).

• Actuator functional integrity: This property is ensured by verify-

ing two sub-properties (correct actuating, which further covers

the case where actuator actions are exactly same as the com-

mand (exact command) and only triggered by a command (only
by command) and correct reporting) for actuators. The exact com-
mand and only by command sub-properties in a actuator might

be breached by device malfunctions (e.g., [6, 25]) are verified by

following the steps mentioned in the table, respectively. Also, the

correct reporting sub-property might be breached by masking

and spoofing attacks (e.g., [10, 20, 37, 57]) in actuators and is

verified by the steps mentioned in the table (where the step in

parenthesis is only needed for masking-like breaches).

4 EXPERIMENTS
Experimental Setups.We conduct our experiments on aWindows

10 host machine with Intel i7 10700 CPU and 32 GB of memory.

The Docker 4.17 was used to containerize the development environ-

ment. Python 3.8.10 was used for coding, PyTorch 1.13.1 was used

to implement machine learning, Flower 1.3.0 library was used for

federated learning, and sdv 0.18.0 was used to generate synthetic

data. We implement our learning steps (as discussed in Section

3.3) leveraging three methods: isolated, centralized and federated.

Isolated learning is where the model for each smart home is trained

individually. Centralized learning is where one model is built by

combining historical sensor data from multiple smart homes. Fed-
erated learning is where the model for each smart home is built by

aggregating the learning results from multiple smart homes.

Dataset: To conduct the experiments, we utilize the Peeves real-

world dataset
∗
[9] containing sensor data from 48 sensors and event

data from 12 different event sources and 12 raspberry pis collected

over the period of 12 days in an office environment. A subset of

Peeves dataset (which includes event notifications and sensor read-

ings) are used in our experiments. The raspberry pi8 senor data also

includes three derived values (yaw, pitch, roll) that are utilized in

∗
PEEVES dataset homepage

our experiments. We exclude those raspberry pis that do not have

event sensor data from our experiments. To prepare our datasets for

different learning models, we spilt our data into different training

and testing sets. As for sensor readings verification, the data is

divided into 75% of train data and 25% of test data. The train data

is further partitioned equally into three train sets for three smart

homes (A, B and C). With respect to the event data, the number of

events or data-points in our dataset is low not being sufficient for

the training or testing of three smart homes. Thus, we leverage the

Synthetic Data Vault (SDV) framework [4] and generate synthetic

train dataset for smart homes A, B and C using the original data.

We then use the original data as the test set. We utilize SDMetrics
library to evaluate the generated synthetic data.

Description of Used Models: As for event notification verification, we

use a typical feed forward neural network (FFNN) with fully con-

nected layers and the Cross_Entropy loss function. With respect to

the sensor readings verification, we utilize an LSTM neural network

with the MSE loss function. In both models, the Adam optimizer

with lr=0.01, betas=(0.9,0.999), eps=1e-8, weight_decay=0,
amsgrad=False are used.

Prediction Accuracy for Sensing Integrity. To measure the

performance of the prediction model for sensor readings (discussed

in Sections 3.3 and 3.4), we measure the R2 score between the

reported and the predicted values, as it is more informative than

other metrics for regression analysis evaluation [12]. Figures 6 and

7 show the R2 scores between the reported and predicted values for

various correlated sensors attached to the Pi8 and Pi10 raspberry

Pis, respectively. As shown, in this set of experiments, we consider

isolated, centralized, and federated learning for each scenario. The

results of different machine learning models are very close for each

sensor. We observe the highest R2 score of 0.98 in Figure 6 and 1.0

in Figure 7; which demonstrates the benefit of using these sensors

in our verification.

Figure 6: R2 score of reported data and predicted values for various
sensors of Pi8.

Figure 7: R2 score of reported data and predicted values for various
sensors of Pi10.

Prediction Accuracy for Actuating Integrity. To exam-

ine the accuracy of our actuator event verification solution

(discussed in Section 3.3 and 3.4), we select door, window, fan,

fridge, and light actuators as our target event sources. For each

actuator, we first predict its events (e.g., door-open/door-close,

window-open/window-close, fan-on/fan-off, fridge-door-open/

ridge-door-close, and light-on/light-off) using the trained

model of each correlated sensor through the isolated, centralized

and federated learning models. Then, we perform ensemble

https://www.doi.org/10.5287/bodleian:mv22Jk2Xj

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Shiva Sunar, Paria Shirani, Suryadipta Majumdar, & J. David Brown

Properties Sub-properties Sample Breaches Steps by Our Solution (Sections)

Functional integrity

Sensor

Correct sensing Sensor failure [11, 13] 3.2.a→ 3.3.a→ 3.4.a→ 3.4.b

Correct reporting Masking and spoofing [9, 10, 20, 37] 3.2.a→ 3.3.a→ (3.4.a)→ 3.4.b

Actuator

Correct actuating

Exact command Device malfunction [6, 25] 3.2.b→ 3.3.b→ 3.4.c

Only by command Device malfunction [6, 25] 3.2.b→ 3.3.b→ 3.4.a→ 3.4.c

Correct reporting Masking and spoofing [9, 10, 20, 37] 3.2.b→ 3.3.b→ (3.4.a)→ 3.4.c

Table 1: Showing verification results of our solution.

learning using all the models having an accuracy of more than 0.5.

We run each of the experiments ten times and the average accuracy

of each individual correlated verification sensor and ensemble

prediction is calculated. Obtained results for both individual and

ensemble learning are presented in Table 2. As seen, in most of

the cases, isolated learning shows lower accuracy than other

two methods and centralized method obtains slightly higher

accuracy than federated. Moreover, in some cases, one sensor data

is sufficient to detect events (e.g., mag_y sensor to detect door

events). We further measure the f1-score and obtain similar results.

In what follows we provide our insights on the obtained results.

Door Events: Several sensors including the magnetometers mag_x,
mag_y, gyroscope gyro_x, and rotation sensors (yaw, pitch, roll) can
detect door-opening and door-closing events with an accuracy of

almost %100. This is expected as these sensors are attached to the

door itself. Pressure sensor can also predict the door events which

implies that opening and closing the door changes the pressure

inside the room. Temperature sensor predicts the door events with

lower accuracy than aforementioned sensors. Opening the door

brings in outside air which might be of different temperature. How-

ever, as the changes in temperature takes some time (whereas for

other sensors changes are seen instantly), and the outside-inside

temperature difference can be high sometimes but low other times.

Therefore, the accuracy to predict door events might have been

lower. Some sensors such as humidity sensor were not able to pre-

dict door events. This implies that opening or closing the door does

not change the humidity of the room instantly, which might be

due to the fact that the humidity outside the room was the same

as inside, or even if it was different it would take some time much

longer than our event window.

Window Events: The sound sensor (rms and rms_db) is the

most reliable predictor of the window events (window-opening and

window-closing) with an accuracy of around 99%. It may have been

the case that the window produced sound while being opened and

closed, or it can also be the case that outside was much more noisier

than inside the room. The light sensor was also able to predict the

window events with around 70%-80% accuracy. It might be the case

that opening the window let more light come in from outside. co2
and voc sensors were also able to predict the window events. One

possible explanation could be the difference in the amount of the

gas inside and outside the room. Temperature sensor in BME sensor

module is able to predict the window events with higher accuracy

(∼90%) than that of temperature sensor in MPU (∼70%). One pos-
sible explanation is that the BME sensor module might have been

closer to the window. Other sensors such as pressure and humidity
were not able to predict the window event as humidity take time to

change a lot longer than our event window. Pressure inside and

outside the room might have been the same. However, we achieve

the highest accuracy of 100% using ensemble learning.

Fridge Door Events:Most of the sensors can predict fridge events

(fridge-door-opening and fridge-door-closing) with high accu-

racy. For pressure, temperature, accelerometer, and gyroscope sensors,

the results can be explained with reasoning the same as the door

events. Light sensor (placed inside the fridge) might be able to pre-

dict it as opening the fridge door lets lights to get in from inside,

and also from the light-bulb inside the fridge whereas closing the

door will make inside completely dark. Inside the fridge is very

humid compared to outside, therefore the humidity sensor might

be able to pick that while opening and closing the fridge door.

Fan Events: Only the sound sensor is able to predict fan events

(fan-on/fan-off) with the highest accuracy of 90%, while the tem-
perature sensor could predict fan events with lowest accuracy. Other
sensors in Table 2 are not able to detect it. This is expected as fan

mainly produces sound without a major effect on other sensors.

Light Events: As expected, light-on/light-off events were reliably
predicted with the light sensor with an accuracy of up to 99% using

federated learning.

Prediction Accuracy for Reporting Integrity. We further eval-

uate the performance of our verification step (discussed in Sec-

tion 3.4), that is used to check the correctness of reports from

sensors and actuators. For each actuator, we select a time window

according to its correlated sensor and monitor the corresponding

timestamps to detect if there has been a missing reporting of an

event. For each of those timestamps, we predict whether it is an

event or a non-event timestamp using the method described in

Section 3.3. Based on the true events and predicted events for the

timestamps, we evaluate various performance metrics (accuracy,

precision, recall and f1-score). Obtained results for the detection of

door, window, light and fridge events are presented in Figure 8 per

actuator. We achieve high score in all these performance metrics

except for the fan events that we receive relatively lower accuracy

due to less effects of fan events on its correlated sensors.

Figure 8: Performance of event detection for various actuators.

Impact of Parameters. Event Window Length Selection: To exam-

ine the effects of event window length (𝑤) for event verification, we

vary the length of windows starting from 0.5 to 5 seconds (using

incremental steps of 0.5𝑠) and measure the accuracy for each of the

values. An example for the correlated sensors on the Pi8 is shown

in Figure 9. Window length with the highest accuracy is chosen

as the final value of𝑤 ; if multiple window lengths have the same

highest accuracy, the longest window length is chosen for𝑤 . For

instance, a window size of 3 is chosen for the yaw sensor, while the

window size of 1 is selected for the acc_y sensor.

Tolerance Threshold Value Selection: To choose the value of the tol-

erance threshold (𝛽), we measure the accuracy results for different

values of 𝛽 as plotted in Figure 10. If the chosen 𝛽 is too high there

will be too many false negative (i.e., largely incorrect sensor read-

ing identified as correct), whereas if it is too low there will be too

On Continuously Verifying Device-level Functional Integrity by Monitoring Correlated Smart Home Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Door tempH tempP press yaw pitch roll mag_x mag_y mag_z acc_x acc_y acc_z gyro_x gyro_y gyro_z Ensem

Isolated 0.50 0.50 0.50 0.74 0.51 0.65 0.69 1 0.99 0.75 0.81 0.92 0.99 0.90 0.78 0.98

Centralized 0.75 0.84 0.96 0.87 0.94 0.99 1 1 0.99 0.73 0.80 0.92 0.99 0.81 0.76 1

Federated 0.65 0.74 0.91 0.94 0.86 0.99 0.99 1 0.99 0.80 0.79 0.90 1 0.91 0.85 1

Window temp humidity acc_x acc_y acc_z gyro_x gyro_y gyro_z temp co2 voc rms rms_db lux full Ensem

Isolated 0.94 0.81 0.89 0.89 0.93 0.74 0.94 0.8 0.55 0.81 0.8 0.97 0.98 0.69 0.82 0.99

Centralized 0.89 0.76 0.90 0.89 0.85 0.82 0.92 0.76 0.77 0.72 0.82 0.99 0.99 0.81 0.73 1

Federated 0.93 0.74 0.89 0.90 0.88 0.82 0.92 0.78 0.62 0.76 0.81 0.99 0.99 0.76 0.8 0.99

Fridge temp press humidity acc_z gyro_x gyro_y gyro_z lux full ir Ensem

Isolated 0.91 1 0.97 0.96 0.6 0.90 0.98 0.99 0.99 0.96 1

Centralized 0.98 1 0.96 0.97 0.74 0.95 0.95 0.99 0.99 0.97 1

Federated 0.96 1 0.97 0.96 0.76 0.90 0.97 0.99 0.99 0.97 1

Fan temp rms rms_db Ensem Light lux full Ensem

Isolated 0.47 0.84 0.88 0.85 Isolated 0.77 0.82 0.64

Centralized 0.72 0.88 0.90 0.89 Centralized 0.87 0.89 0.54

Federated 0.61 0.86 0.88 0.87 Federated 0.91 0.84 0.75
Table 2: Comparing the accuracy results of different event detection models for each of the actuators and their correlated sensors. The values in
bold show the highest accuracy per sensor for each learning model. The cells shaded in grey represent the highest accuracy for each actuator.

Figure 9: Impact of different event window length on the accuracy.

many false positive (i.e., almost correct sensor reading identified as

incorrect). Thus, we need to select the minimum value of 𝛽 without

getting much false positive or giving up accuracy of the detection.

For instance, the optimum values of 𝛽 for door and fridge are 50%

and 35%, respectively.

Figure 10: The impact of 𝛽 on our sensor reading verification.

Resource Overhead.We further compare the CPU and memory

overhead of federated and non-federated (Centralized) methods

for training a model for door events verification. Obtained results

shown in Figure 11 suggest that the federated learning uses around

1.57 (for datapoints = 100) to 2.1 (for datapoints = 600) times more

CPU time utilizing almost the same amount of memory. With re-

spect to the non-federated method, we use centralized because fed-

erated and centralized has the same number of data points whereas

isolated has less number of data-points. It can be seen that the

federated method uses around 1.57 (at datapoints = 100) to 2.1 (at

datapoints = 600) times more CPU time and around 1.1 times more

memory than the non-federated (centralized) method.

Figure 11: Comparing the CPU and memory overhead of federated
and non-federated (centralized) methods for event verification.

5 DISCUSSION
Supporting Different Smart Environment Setups. Even though
our solution is currently implemented for smart homes, our pro-

posed approach is applicable to other similar smart environments

(e.g., smart office, smart city). With the broader outreach, the diver-

sity (especially in the nature of learning data) among multiple smart

environments will also increase. Therefore, our current learning

approach is implemented using three different techniques: central-

ized (where data from multiple smart environments are aggregated

before learning), federated (where data from multiple smart envi-

ronments are aggregated through learning), and isolated (where

data from each smart environment is only used for learning) to sup-

port various scenarios. Specifically, centralized learning might be

suitable for a smart city like scenario where data from its different

components (e.g., buildings, transportation, etc.) can be aggregated

without any privacy concerns. Federated learning might be suitable

for an office environment where different departments within an

organization might collaborate as long as their private data is not

leaked. Finally, isolated learning might be useful for a smart envi-

ronment where data sharing is impossible (due to privacy/security

issues) or useless (due to significant difference in nature).

Varying Reporting Intervals. Based on the interval time for

sensing in different IoT devices, the granularity of our verification

step might vary. In most cases, this interval is chosen to optimize

the energy efficiency of those devices. For our experiments, we

chose the default interval time and no change in configuration was

performed (to replicate a typical smart home environment where

homeowners rarely modify its settings). However, in most current

IoT devices, it is possible to configure their interval time; which

can be used to adjust the frequency of our verification.

The Impact of Simultaneous Events. If two actuators are nearby
then event in one actuator might result in a wrong unreported

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Shiva Sunar, Paria Shirani, Suryadipta Majumdar, & J. David Brown

event detection for the other, as described in [37]. For example, if a

door and window are nearby and opening both of them produce

similar effect on a sound sensor, then an incorrect reporting of the

door-opening event might be undetected, if our solution would only

be using sound sensor data. Using multiple sensor readings (as long

as not affected by the other event(s)) and their ensemble predictions

(as discussed in Section 3.3) might help to reduce this effect. In the

future, we plan to develop [37] like solution for functional integrity

verification to fully overcome this issue.

The Impact of Distance between Devices. Like most event veri-

fication system [9, 10], our actuator verification step also relies on

how an event affects the sensors physically. This effect is typically

dependent on the distance between an actuator and correlated sen-

sors. Therefore, in our future work we intend to explore the effect

of the distance between devices on our solution (inspired by [43]).

The Impact of Outliers and Poisonous Data. If the training

data is poisoned by an adversary or includes outliers (e.g., opposite

nature data from a smart home) then our learning step might be

affected. One possible way to reduce this effect could be to assign

weights to models based on their performance and then perform

weighted aggregation of the models during the federation step.

6 RELATEDWORK
Verification in Smart Homes. There exist several works (e.g., [9,
10, 20, 37] to verify smart home security. For instance, PEEVES [9]

and Haunted-House [10] verify the correctness of the reported

event notifications using the effects of an event on nearby sensors.

However, unlike ours, they do not provide a verification system that

can support all sensing integrity, actuating integrity, and reporting

integrity.HAWatcher [20] constructs correlation rules for monitor-

ing event and command manipulation, as well as detecting device

malfunctions. However, it does not perform any sensor integrity

verification. Ozmen et al. [37] on the other hand build event finger-

prints to facilitate reporting integrity. However, they do not include

the sensing integrity. ARGUS [40] supports actuator integrity by

detecting spoofing events, masking events, spoofing commands,

and masking commands. However, the authors have not evaluated

its ability to verify sensing integrity. ThingsDND [11] proposes a

context-aware method to detect and diagnose IoT device failures for

multi-resident smart homes. ElHady et al. [18] detect sensor failure
in ambient assisted living using association rule mining. However,

they do not provide reporting integrity.

CLEAN [55] identifies faults in binary sensors in a smart home

environment, but is unable to verify sensing integrity. Horus-

Eye [17] is a two-stage anomaly detection system designed to

manage the growing traffic from IoT devices. However, it dose

not perform functionality integrity. Dice [13] detects incorrect sen-

sor states and state transitions by learning the possible sets of states

of all the sensors in a system and the probability of transition of

states from one set to another during the learning phase. [18, 28, 34]

detect sensor faults using the association rules which capture the

relationship among sensors. However, they do not support actuat-

ing integrity and reporting integrity. Detectif [34] and Idea [28]

detect missing events but their solution is only applicable to smart

homes which are customized to infer activities of daily living (ADL),

but it is not applicable in general to smart home scenario.

There are works [8, 21, 26, 27, 50] on the verification of the sensor

readings, however, all of these solutions are based on either hard-

ware redundancy or dedicated verification devices. For instance,

the authors in [21] detect sensor faults by utilizing the data gath-

ered by nearby sensors of similar types. There are several works

(e.g., [14, 27, 49, 51]) that use camera to perform various security

operations (such as intrusion detection, remote monitoring, etc.).

However, for those works, users need to monitor captured videos

to detect the events of interests, which can be challenging [33].

Additionally, those works can only detect attacks that have visual

effects (captured by a camera).

Missing Event Detection in Smart Home. SecureHouse [32]
detects door events by measuring the vibrations through a smart-

phone accelerometer mounted near the door. Similarly, [23] de-

tects user-passing event primarily by measuring the changes in

magnetic intensity using the on-board magnetometer sensor of a

smartphone. The authors in [16] detect door events using the sound

impulse generated by a smartphone and analysing the Doppler shift

of the received response caused by the moving door. Some other

works [31, 52, 53] detect events by utilizing spatial and temporal

patterns in the sensor data (e.g., slope, jump, and spike). However,

all of them only focus on detecting missing events.

Other Security Solutions for Smart Home. DÏoT [36] detects

compromised IoT devices through network traffic packets. The

SmartThings system is investigated in [19] where a number of

vulnerabilities introduced by privileged smart home applications

are discovered. One of those vulnerabilities enables event spoofing.

Shuvo et al. [45] verify security policies on smart home devices

using existing security standards. In [48], malicious mobile phone

applications can infect home networks leaving smart home devices

vulnerable to attacks from distant. However, none of those works

verify sensor readings and event notifications in a smart home.

7 CONCLUSION
Even though the functional integrity property in an IoT device is

critical for the secure and safe operations of smart homes, none of

existing works in smart homes aim to verify this integrity property.

In this paper, we proposed an approach to continuously verifying

the device-level functional integrity by monitoring correlated smart

home devices. To that end, we first learned the relationships among

correlated devices based on various events and sensor readings.

Then we leveraged this relationship to verify the correctness of

reported sensor readings and event notifications as well as to detect

unreported events. We implemented our solution in the context of

smart home and evaluated its effectiveness using a public dataset. As

future work, we plan to apply our method to other IoT applications

such as autonomous vehicle and smart city, where verification of

functional integrity is needed. Also, we plan to extend our device-

level solution for the cyberspace to cover wider range of threats.

Acknowledgement. The authors thank the anonymous reviewers

for their valuable comments. We also acknowledge Piyush Ad-

hikari’s help in representing the experiment results. This material

is based upon work supported by the Natural Sciences and En-

gineering Research Council of Canada (NSERC) and Department

of National Defence Canada (DND) under the Discovery Grants

RGPIN-2021-04106 and DGDND-2021-04106.

On Continuously Verifying Device-level Functional Integrity by Monitoring Correlated Smart Home Devices WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

REFERENCES
[1] openHAB 2024. Empowering the smart home. openHAB. https://www.openhab.

org/

[2] NIST 2024. National Vulnerability Database - CVE-2023-50124 Detail. NIST.

https://nvd.nist.gov/vuln/detail/CVE-2023-50124

[3] OpenMotics 2024. OpenMotics makes building automation relevant. OpenMotics.

https://www.openmotics.com/en/

[4] DataCebo 2024. The Synthetic Data Vault. DataCebo. https://sdv.dev/

[5] Shadi Al-Sarawi, Mohammed Anbar, Kamal Alieyan, and Mahmood Alzubaidi.

2017. Internet of Things (IoT) communication protocols. In 2017 8th International
conference on information technology (ICIT). IEEE, 685–690.

[6] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:

Security evaluation of home-based IoT deployments. In IEEE Symposium on S&P.
1362–1380.

[7] Home Assistant. 2024. Awaken your home. http://www.home-assistant.io/.

[8] David S Bayard and Scott R Ploen. 2005. High accuracy inertial sensors from

inexpensive components. US Patent 6,882,964.

[9] Simon Birnbach, Simon Eberz, and Ivan Martinovic. 2019. Peeves: Physical Event

Verification in Smart Homes. In ACM CCS. ACM, 1455–1467.

[10] Simon Birnbach, Simon Eberz, and Ivan Martinovic. 2022. Haunted house: physi-

cal smart home event verification in the presence of compromised sensors. ACM
TIOT 3, 3 (2022), 1–28.

[11] Alireza Borhani and Hamid R Zarandi. 2022. ThingsDND: IoT Device Failure

Detection and Diagnosis for Multi-User Smart Homes. In 2022 18th European
Dependable Computing Conference (EDCC). IEEE, 113–116.

[12] Davide Chicco, Matthijs J Warrens, and Giuseppe Jurman. 2021. The coefficient

of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE

and RMSE in regression analysis evaluation. PeerJ Computer Science 7 (2021),
e623.

[13] Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko, Wonup Jung, Hanjun

Kim, and Jong Kim. 2018. Detecting and identifying faulty IoT devices in smart

home with context extraction. In 48th Annual IEEE/IFIP International Conference
on DSN. IEEE, 610–621.

[14] Shruti Dash and Pallavi Choudekar. 2022. IoT-Based Smart Home Surveillance

System. In Applied Information Processing Systems. Springer, 417–427.
[15] Wenbo Ding, Hongxin Hu, and Long Cheng. 2021. IoTSafe: Enforcing Safety

and Security Policy withReal IoT Physical Interaction Discovery. In Network and
Distributed System Security Symposium.

[16] Thilina Dissanayake, Takuya Maekawa, Daichi Amagata, and Takahiro Hara.

2018. Detecting door events using a smartphone via active sound sensing. ACM
IMWUT 2, 4 (2018), 1–26.

[17] Yutao Dong, Qing Li, Kaidong Wu, Ruoyu Li, Dan Zhao, Gareth Tyson, Junkun

Peng, Yong Jiang, Shutao Xia, and Mingwei Xu. 2023. {HorusEye}: A Realtime

{IoT} Malicious Traffic Detection Framework using Programmable Switches. In

32nd USENIX Security Symposium (USENIX Security 23). 571–588.
[18] Nancy E ElHady, Stephan Jonas, Julien Provost, and Veit Senner. 2020. Sensor

failure detection in ambient assisted living using association rule mining. Sensors
20, 23 (2020), 6760.

[19] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis of

emerging smart home applications. In IEEE symposium on S&P. IEEE, 636–654.
[20] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021. HAWatcher: Semantics-

aware anomaly detection for appified smart homes. In 30th USENIX Security
Symposium. 4223–4240.

[21] Saurabh Ganeriwal, Laura K Balzano, and Mani B Srivastava. 2008. Reputation-

based framework for high integrity sensor networks. ACM TOSN 4, 3 (2008),

1–37.

[22] Aniketh Girish, Tianrui Hu, Vijay Prakash, Daniel J Dubois, Srdjan Matic,

Danny Yuxing Huang, Serge Egelman, Joel Reardon, Juan Tapiador, David

Choffnes, et al. 2023. In the Room Where It Happens: Characterizing Local

Communication and Threats in Smart Homes. In ACM IMC. 437–456.
[23] Liangyi Gong, Yiyang Zhao, Chaocan Xiang, Zhenhua Li, Chen Qian, and Panlong

Yang. 2018. Robust light-weight magnetic-based door event detection with

smartphones. IEEE Transactions on Mobile Computing 18, 11 (2018), 2631–2646.

[24] Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin. 2014. Smart

nest thermostat: A smart spy in your home. Black Hat USA 2015 (2014).

[25] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and

David Wagner. 2016. Smart locks: Lessons for securing commodity internet of

things devices. In ACM ASIACCS. 461–472.
[26] Mahdi Jafari and Jafar Roshanian. 2013. Inertial navigation accuracy increasing

using redundant sensors. Journal of Science and Engineering 1, 1 (2013), 55–66.

[27] Lee Han Keat and Chuah Chai Wen. 2018. Smart indoor home surveillance

monitoring system using Raspberry Pi. JOIV 2, 4-2 (2018), 299–308.

[28] Palanivel A Kodeswaran, Ravi Kokku, Sayandeep Sen, and Mudhakar Srivatsa.

2016. Idea: A system for efficient failure management in smart IoT environments.

In ACM MobiSys. 43–56.
[29] Diana Kornbrot. 2014. Point biserial correlation.Wiley StatsRef: Statistics Reference

Online (2014).

[30] Ludmila I Kuncheva. 2014. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons. 123 pages.

[31] Mo Li, Yunhao Liu, and Lei Chen. 2008. Nonthreshold-based event detection for

3D environment monitoring in sensor networks. IEEE Transactions on Knowledge
and Data Engineering 20, 12 (2008), 1699–1711.

[32] Michael A Mahler, Qinghua Li, and Ang Li. 2017. SecureHouse: A home security

system based on smartphone sensors. In PerCom. IEEE, 11–20.

[33] N Malarvizhi, Arun Kumar Dash, V Manikanta, and Athreayasa Kalyan. 2022. AI-

Based Tracking System from Real-Time CCTV Captures. In Artificial Intelligence
and Sustainable Computing. Springer, 739–747.

[34] Madhumita Mallick, Archan Misra, Niloy Ganguly, and Youngki Lee. 2020. DE-

TECTIF: Unified detection & correction of IoT faults in smart homes. InWoWMoM.

IEEE, 78–87.

[35] MHammadMazhar, Li Li, Endadul Hoque, and Omar Chowdhury. 2023. Maverick:

An app-independent and platform-agnostic approach to enforce policies in IoT

systems at runtime. In ACM WiSec. 73–84.
[36] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N

Asokan, and Ahmad-Reza Sadeghi. 2019. DÏoT: A federated self-learning anomaly

detection system for IoT. In IEEE ICDCS. 756–767.
[37] Muslum Ozgur Ozmen, Ruoyu Song, Habiba Farrukh, and Z Berkay Celik. 2023.

Evasion attacks and defenses on smart home physical event verification. In NDSS
2023. NDSS.

[38] K Pearson. 1895. Notes on regression and inheritance in the case of two parents

proceedings of the royal society of London, Vol. 58. , 240-242 pages.

[39] Abhay Kumar Ray and Ashish Bagwari. 2020. IoT based Smart home: Security

Aspects and security architecture. In IEEE CSNT. IEEE, 218–222.
[40] Phillip Rieger, Marco Chilese, Reham Mohamed, Markus Miettinen, Hossein

Fereidooni, and Ahmad-Reza Sadeghi. 2023. ARGUS: Context-Based Detection

of Stealthy IoT Infiltration Attacks. In USENIX Security. 4301–4318.
[41] Murray Rosenblatt. 1956. Remarks on some nonparametric estimates of a density

function. The annals of mathematical statistics (1956), 832–837.
[42] Álvaro San-Salvador and Álvaro Herrero. 2012. Contacting the devices: a review

of communication protocols. In Ambient Intelligence-Software and Applications:
3rd International Symposium on Ambient Intelligence (ISAmI 2012). Springer, 3–10.

[43] Rahul Anand Sharma, Elahe Soltanaghaei, Anthony Rowe, and Vyas Sekar. 2022.

Lumos: Identifying and LocalizingDiverse Hidden {IoT} Devices in anUnfamiliar

Environment. In 31st USENIX Security Symposium. 1095–1112.

[44] V.K. Shen, D.W. Siderius, W.P. Krekelberg, and H.W. Hatch. 2019. Considerations
for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks. Technical
Report. National Institute of Standards and Technology.

[45] Md Wasiuddin Pathan Shuvo, Md Nazmul Hoq, Suryadipta Majumdar, and Paria

Shirani. 2023. On Reducing Underutilization of Security Standards by Deriving

Actionable Rules: An Application to IoT. In International Conference on Research
in Security Standardisation. Springer, 103–128.

[46] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac. 2019.

Aegis: A context-aware security framework for smart home systems. In ACSAC.
28–41.

[47] Amit Kumar Sikder, Leonardo Babun, and A Selcuk Uluagac. 2021. Aegis+ a

context-aware platform-independent security framework for smart home systems.

Digital Threats: Research and Practice 2, 1 (2021), 1–33.
[48] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-

phones attacking smart-homes. In ACM WiSec. 195–200.
[49] Tanin Sultana and Khan AWahid. 2019. IoT-Guard: Event-driven fog-based video

surveillance system for real-time security management. IEEE Access 7 (2019),
134881 – 134894.

[50] Thomas George Thuruthel, Josie Hughes, Antonia Georgopoulou, Frank Clemens,

and Fumiya Iida. 2021. Using redundant and disjoint time-variant soft robotic

sensors for accurate static state estimation. IEEE Robotics and Automation Letters
6, 2 (2021).

[51] Lingshan Xu, Xianghan Zheng, Wenzhong Guo, and Guolong Chen. 2012. A

Cloud-based monitoring framework for Smart Home. In 4th IEEE CloudCom.

IEEE, 805–810.

[52] Wenwei Xue, Qiong Luo, Lei Chen, and Yunhao Liu. 2006. Contour map matching

for event detection in sensor networks. In ACM SIGMOD. 145–156.
[53] Wenwei Xue, Qiong Luo, and Hejun Wu. 2012. Pattern-based event detection in

sensor networks. Distributed and Parallel Databases 30, 1 (2012), 27–62.
[54] Rozhin Yasaei, Felix Hernandez, and Mohammad Abdullah Al Faruque. 2020.

IoT-CAD: Context-aware adaptive anomaly detection in IoT systems through

sensor association. In ICCAD. 1–9.
[55] Juan Ye, Graeme Stevenson, and Simon Dobson. 2015. Fault detection for binary

sensors in smart home environments. In PerCom. IEEE, 20–28.

[56] Xiaojing Ye and Junwei Huang. 2011. A framework for cloud-based smart home.

In ICCSNT, Vol. 2. IEEE, 894–897.
[57] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin

Zhu. 2018. HoMonit: Monitoring smart home apps from encrypted traffic. In

ACM CCS. 1074–1088.

https://www.openhab.org/
https://www.openhab.org/
https://nvd.nist.gov/vuln/detail/CVE-2023-50124
https://www.openmotics.com/en/
https://sdv.dev/
http://www.home-assistant.io/

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Shiva Sunar, Paria Shirani, Suryadipta Majumdar, & J. David Brown

A BACKGROUNDS
A smart home is typically equippedwith devices and appliances that

are connected to and can be controlled remotely using a smartphone

or computer via the Internet. A typical smart home architecture

is shown in Figure 12, where various smart home transducers are

connected to the smart hub. A hub is connected to the devices either

through a third-party cloud or directly using various communica-

tion protocols.

Smart home transducers

Smart hub Our systemCloud

Connected
through cloud

Directly
connected

Data

Figure 12: An overview of a smart home architecture [39, 56, 57].

The functionality of each IoT device might be different and ac-

cording to their functionalities, the corresponding requirements of

bandwidth, physical ranges, latency, and power consumption can

vary. For example, a security camera might need a high bandwidth

connection and its power consumption does not matter much, as

it can be mains powered. But for a battery-powered device such

as a thermometer or a contact sensor, low bandwidth is acceptable

but they must be power efficient. Therefore, to cater to these differ-

ent needs of different devices there are different communication

protocols with their own strength and weakness. For low-powered

and low-bandwidth use cases, there are protocols such as ZigBee,

Z-Wave, Thread, and Matter. Whereas, for more bandwidth, there

are protocols such as Bluetooth Low Energy (BLE), and for even

more bandwidth at the cost of more power, there are protocols such

as Wi-Fi [5]. There are also power-line communication protocols

that use existing AC powerlines to communicate between devices

such as X-10, UPB, and LonWorks [42]. Some IoT devices, nest ther-

mostats, for example, store their data directly to the cloud platform

of their manufacturers [24]. Different IoT devices using different

protocols may not be able to communicate directly with each other.

Home automation systems, such as Home-Assistant, openHAB, and

Open-Motics, can be utilized to integrate all the devices in a single

platform which enables them to communicate with each other, as

shown in Figure 12.

Figure 13 shows an example showing the relationship between

smart home devices which is leveraged in our solution (in Section 3).

Figure 13: An example showing relationships between smart devices.

B ENSEMBLE LEARNING ALGORITHM
Event prediction using ensemble learning of event-sensor relation-

ships is detailed in Algorithm 1.

Algorithm 1 Compute ensemble prediction

Input:
A ← set of accuracies for each model,
P ← set of predictions of each model
Output: 𝑝𝑒𝑛𝑠 ← ensemble prediction

1: 𝑠𝑢𝑚 ← 0 , 𝑝𝑒𝑛𝑠 ← ∅
2: for all (𝑝𝑖 , 𝑎𝑖) s.t. 𝑝𝑖 ∈ P and 𝑎𝑖 ∈ A, do
3: 𝛼𝑖 ← log[𝑎𝑖/(1 − 𝑎𝑖)]
4: if 𝑝𝑖 = 1 then
5: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝛼𝑖
6: else
7: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 − 𝛼𝑖
8: end if
9: end for
10: if 𝑠𝑢𝑚 > 0 then
11: 𝑝𝑒𝑛𝑠 ← 1

12: end if
13: return 𝑝𝑒𝑛𝑠

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Overview
	3.2 Correlated Device Identification
	3.3 Learning
	3.4 Monitoring and Verification

	4 Experiments
	5 Discussion
	6 Related Work
	7 Conclusion
	References
	A Backgrounds
	B Ensemble Learning Algorithm

