
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 1

Traditional IOCs Meet Dynamic App-Device
Interactions for IoT-specific Threat Intelligence

Sofya Smolyakova, Ehsan Khodayarseresht and Suryadipta Majumdar

Abstract—While enjoying widespread popularity, IoT faces
numerous threats using both traditional (e.g., Common Vul-
nerabilities and Exposures (CVEs) and Common Weakness
Enumerations (CWEs)) and IoT-specific (e.g., device-application
interactions) attack vectors. Therefore, gathering threat intelli-
gence for an IoT environment is equally essential if not more
(compared to many other IT environments). However, extracting
threat intelligence from an IoT deployment poses several unique
challenges. First, most IoT implementations are not logging
threat-related information and even if they are, their logging
mechanisms require significant additional effort to turn those
logs to a threat intelligence. Second, there is no clear definition
of IOCs (indicators of compromise), which are the key inputs
to threat intelligence, in the context of IoT; including how
to combine IoT-specific IOCs including that are involved with
the dynamic app-device interactions. In this paper, we propose
IoTINT, a solution to obtain IoT-specific threat intelligence while
addressing the above-mentioned challenges. Specifically, our key
ideas are to first enable logging in IoT devices and apps without
requiring any code instrumentation (in contrast to existing ap-
proaches), then iteratively finding dynamic interactions between
IoT devices and their apps that are defined by automation rules
and result in various security threats, and finally, combine both
app-device interactions with traditional IOCs (such as, CVEs
and CWEs) to build a comprehensive threat intelligence for
IoT. We implement IoTINT for Samsung SmartThings, a major
smart home platform, and evaluate its performance (e.g., 100%
coverage in extracting threat intelligence within 11 seconds for
10 realistic IoT attack scenarios).

Index Terms—IoT security, threat intelligence, indicator of
compromises.

I. INTRODUCTION

The usage of connected devices in smart environments (e.g.,
homes/offices, health facilities, factories and cities) follows
an upward trend [1], opening doors for significant security
threats and attacks in IoT, the number of which reached to
112 million in 2022 worldwide and keeps growing [2], [3].
Smart environments are typically managed by IoT platforms,
such as Samsung SmartThings [4], AWS IoT Core [5], Google
IoT Core [6], and openHAB [7]. These IoT platforms support
the interconnection of diverse IoT devices via automations
and assist in deploying customized smart applications that
implement a wide range of user requirements. Thus, security

Sofya Smolyakova, Ehsan Khodayarseresht and Suryadipta Majumdar
are with Concordia Institute of Systems Engineering (CIISE), Concordia
University, Montreal, Canada (e-mails: sofya.smolyakova@concordia.ca,
ehsan.khodayarseresht@concordia.ca, suryadipta.majumdar@concordia.ca).
Copyright (c) 2024 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

attacks in IoT can follow various attack vectors encompassing
traditional methods like vulnerability exploitation and IoT-
specific approaches such as systems events and remote com-
mands based on device-app interactions [8]. Therefore, threat
intelligence gathering is critical to keep fresh knowledge about
emerging attacks in IoT, define mitigating mechanisms and
enhance security [9].

Existing research studies that gather IoT-specific threat
intelligence (e.g., [10]–[14]) cover compromised IoT devices
only from the network perspective, missing possible threats
rooted in device-app interactions. These works extensively
collect network traffic from compromised IoT devices using
diverse methodologies such as telescopes, honeypots, machine
learning, and deep learning. Subsequently, the collected traffic
undergoes thorough analysis to extract various malware arti-
facts and attack patterns specific to these IoT devices, consti-
tuting IoT-specific threat intelligence. In addition, threat intel-
ligence is usually produced from threat-related information or
evidence, which is not always available in IoT. Other works on
IoT (e.g., [15]–[17]) focus on providing raw logs from smart
environments in an unstructured manner, and thus it is tedious
to manually identify which log entries are threat-related. Also,
traditional Cyber Threat Intelligence (CTI) studies (e.g., [18]–
[23]) also focus on the network aspect and are not fully helpful
for the IoT domain due to the limitations of IoT device’s
resources and the complexity of the smart environment.

Therefore, the IoT-specific challenges to obtain threat
intelligence is unaddressed. Specifically, smart environments
involve intricate interactions among IoT devices, applications,
platforms, and users, which the traditional CTI cannot
describe. Hence, there is no definition for Indicator of
Compromise (IOCs), which are the major inputs to CTI,
specific to the IoT context that could describe smart
environment behavior. Furthermore, obtaining IoT-specific
threat intelligence from the device-app interactions requires
uncovering the artifacts that describe the smart environment
behavior and establishing the chronological connectivity
among various pieces of attack evidence. These limitations
will be further illustrated in the following motivative example.

Motivative Example. Figure 1 shows our motivating example
with a security problem (on the top), challenges to generate
threat intelligence for smart environments using existing solu-
tions (below) and our ideas to achieve the goal (on the bottom).
Problem: In a given scenario in an organization (Org A),
there are a Smart garage door, Smart lock, Smart camera,

0000–0000/00$00.00 © 2024 IEEE

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 2

growing crime rates
disrupting critical
infrastructure

Smart
garage

door

Garage
controller

app

Smart
Lock

Motion
detector

Lock
controller

app

Smart
camera

Org C

Burglary at
smart home

Org B

Org A CVE-2023-1748

CVE-2023-41898

Smart garage
door Smart

app1

Security Impacts
Attacks through IoT Apps

and Devices in diverse
smart environments

Problem: threats from diverse IoT environments

Solution: to obtain IoT-specific threat intelligence

Security
expert

Challenge 2: lack of IoCs
definision in smart

environment

Challenge 1: lack of
readiness for threat

intel in IoT logs

CWE

CVE

CAPEC

Unknown but
specific to IoT

?
Traditional
and useful

in IoT

?
?

??

Idea 2: defining IoT threat
intelligence by combining
IoT-specific and traditional

IoCs

Idea 1: iteratively finding
dynamic connectivity from

platform logs

detected

unlocked

unlock
command

open
command

opened
Garage

controller
app

off
command

Cause-IoC1

Impact-IoC2

Garage Controller app

user
command

CWE

CVE device
event

app
command

app subscription

mode
event

CAPEC

Traditional
IoCs

IoT-specific
IoCs

Extensive
information

about a
threat

Using existing solutions [10-14],[15-17],[18-23]

Using our ideas

[...05-2023 15.30...] command: open
device: smart garage door
[...05-2023 15.31...] command: off
 device: smart camera

[...05-2023 15.31...] status: off
[...05-2023 20.11...] status: on

Smart Camera

[...05-2023 14.34...] status: closed
[...05-2023 15.30...] status: opened

Smart Garage Door

...

How to
connect

both IOCs

+

Fig. 1: Our motivating example demonstrates the necessity for
IoT-specific threat intelligence due to the broad spectrum of
threats in diverse IoT environments. Traditional solutions face
challenges, prompting the need for a new approach, as hinted
in our proposed ideas.

and Smart app1 among others. While exploiting a vulnera-
bility (CVE-2023-1748) in the Smart garage door and
another vulnerability (CVE-2023-41898) in the smart appli-
cation, Smart app1, an attacker unlocks the door without
proper authorization and disables the exterior camera to remain
stealthy [16]. Due to the popularity and cost-effectiveness
of those products, other organizations (Org B and Org C)
might use the same products and potentially face similar secu-
rity and safety threats. Thus, while vulnerable IoT objects lead
to small-scale threats such as burglary and intrusion within
individual organizations, they have the potential to contribute
to elevated crime rates in smart cities and, subsequently,
impact the functionality of critical infrastructures. Therefore, it
is essential to obtain intelligence about those emerging threats
in Org A, B, C, etc.
Current Challenges: The existing IoT threat intelligence solu-
tions (e.g., [10]–[14]) focusing mainly on outbound traffic of
the smart environment network, and hence the device and ap-
plication level threats (as depicted above) remain undetected.

In addition, the employment of traditional CTI approaches
(e.g., [18]–[23]) in the IoT domain faces a set of challenges
which hinder gathering threat information as follows.
• Challenge 1: The lack of readiness in IoT logs hinders their

utilization in extracting IoT-specific threat intelligence. The
implication of such a challenge is that a large volume of
unprocessed entries requires considerable time and effort to
identify incident-related records that could serve as IOCs
manually. Specifically, Figure 1 presents log samples of the
Garage Controller app, Smart garage door, and Smart cam-
era that comprise such fields as timestamp, sent command,
device, status, etc., indicating the device’s status or the sent
app command at a specific time. Thus, by observing these
logs, it is impossible to identify which entries might be
attack evidence and which device-app communications led
to the incident. Furthermore, the existing approaches are
insufficient to address this challenge due to the deficiency
of suitable logging solutions. Even though certain previous
studies [15]–[17] suggest the utilization of a code instru-
mentation approach to capture the behavior of IoT devices
and applications. Recently, due to contemporary smart ap-
plications running on third-party servers, code access and
analysis have become infeasible [24].

• Challenge 2: The lack of definition for IOCs in the IoT
domain brings up questions such as: 1) Considering that
existing solutions rely on traditional IOCs for threat intelli-
gence generation, which of these IOCs remain pertinent and
effective for IoT threat intelligence? 2) Given the scarcity of
IOCs that characterize interactions among devices, applica-
tions, platforms, and users, what novel IoT-specific IOCs
need to be introduced to provide insight into the smart
environment behavior? 3) How can traditional IOCs be
combined with IoT-specific IOCs to provide holistic threat
intelligence for the IoT domain? The implication of such a
challenge is inaccurate detection of threats targeting IoT de-
vices and applications behavior. Furthermore, the absence of
an IOC definition for the IoT domain can lead to incomplete
threat intelligence reports for security experts. Consequently,
analyzing and understanding threats become challenging,
as well as the ability to define effective countermeasures
and mitigation strategies. The existing approaches [25]–[30]
are insufficient to address this challenge mainly because
they utilize traditional IOCs, as the source of the threat
information is outbound network traffic. However, these
works only cover artifacts collected about attacks, such as
backdoors, DDos, injection, scanning, etc., and ignore the
attacks emerging from device-app interactions in the IoT
environment.

Our Ideas: To overcome those challenges, we propose:
• Idea 1: Tackling Challenge 1, where we first establish

logging capabilities without relying on code instrumentation
requirements. Additionally, we iteratively derive dynamic
connectivity between devices and apps, transforming them
into incident-related IOCs. The objective is to comprehend,
for example, that the garage controller app initiated the
garage door opening incident in response to the unlocked
event, and the same app deactivated the camera as a result
of the incident.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 3

• Idea 2: To address Challenge 2, we formulate IoT threat
intelligence. In this context, we define that traditional IOCs
such as Common Vulnerabilities and Exposures (CVEs)
[31], Common Weakness Enumerations (CWEs) [32], and
Common Attack Pattern Enumeration and Classification
(CAPECs) [33] offer valuable insights for threat intelligence
in the IoT domain. Additionally, we introduce novel IoT-
specific IOCs, encompassing elements like device events,
app commands, app subscriptions, etc., to describe device-
app behavior in the smart environment. Ultimately, we com-
bine IoT-specific and traditional IOCs to better understand
threats.
More specifically, this paper complements existing IoT

threat intelligence solutions as we propose a practical
platform-centric approach for obtaining IoT-specific threat
intelligence about threats implemented based on device-app
interactions within a smart environment. First, our work in-
troduces new, tailored, and specific to IoT IOCs. Second, we
design our framework, namely, IoTINT, that enables logging
in a smart environment, derives dynamic connectivity between
IoT devices and apps from the logs, combines them with tradi-
tional IOCs (e.g., CVEs, CWEs) and generates various usable
reports (e.g., machine-readable, human-readable). Third, we
demonstrate the practicality of our approach to the different
security contexts with two use cases. Finally, we evaluate
our solution through extensive experiments based on realis-
tic smart home scenarios and simulated attacks, comprising
multiple smart applications and IoT devices.
The main contributions of this work are as follows:
• As per our knowledge, we are the first to design a practical

framework for an IoT environment that obtains IoT-specific
threat intelligence for various security incidents that allows
threat intelligence extraction from IoT logs by deriving
chronological connectivity between devices and apps from
their interactions. Additionally, we combine derived IoT-
specific IOCs with traditional IOCs to provide more insights
into a threat.

• Our proposed approach is complementary to the existing
IoT threat intelligence works by introducing new Indicators
of Compromise (IOCs) that describe devices and apps’
behavior in a smart environment (in contrast to the network-
level IOCs from those other works).

• Using 10 different classes of real smart home attacks [16],
[34]–[37], we show the ability of our tool to generate critical
threat intelligence related to an incident in IoT, including
information about both device and app vulnerabilities. In
addition, we demonstrate the practicality of produced threat
intelligence reports in two complementary use cases: (i)
incident response for known threats and (ii) vulnerability
assessment for unknown threats.

• We evaluate our solution’s effectiveness on a dataset consist-
ing of logs about smart home behavior generated using both
real and simulated IoT devices of SmartThings [38] (one
of the most popular IoT platforms) where IoTINT shows
100% coverage in generating threat intelligence for smart
homes. In addition, the efficiency and usability of IoTINT
are evaluated. One of the results shows that the extraction
of all IOCs relevant to the incident, whose number varies

from 3 to 403 takes less than 20 seconds and spends not
more than 110 MB of memory.

II. PRELIMINARIES

This section provides the necessary background, discusses
existing challenges in IoT, and defines our threat model.

A. Background

Indicators of Compromise (IOCs). The Indicator of Compro-
mise (IOC) is a specific artifact, evidence or piece of forensic
data that indicates that a system has faced or is potentially
facing an attack or malicious activity [39] and is a crucial
part of threat intelligence. Depending on the complexity and
the level of detail in the data presentation, there are three
types of IOCs [40]: atomic, computed and behavioral. The
atomic IOCs are individual data fragments that point to an
adversary activity and can not be broken into smaller parts;
e.g., IP addresses, domains, URLs, and email addresses. The
computed indicators are usually derived or calculated from
the data involved in an incident; e.g., hash values of known
malicious files. The behavioral indicators combine atomic and
computed IOCs, offering a more comprehensive view of the
various stages involved in an attack flow or malicious activity;
e.g., MITRE tactics, techniques and procedures (TTPs) [41].

SmarThings
Devices

Third-party app

Smart
Light

Smart
Motion

Detector

Subscribtions:
"motion

detected" event

Light Controller
 App

State:
motion detected

Event:
motion detected

Command:
turn on the light

Command:
turn on the Light

SmartThings
Cloud

Event:
light is on

Event:
motion is
detected

1
2

3

45

6
7State:

light is on

Fig. 2: Device-app interactions in SmartThings [42].

Smart Home Architecture. IoT platforms allow users to
efficiently manage IoT devices, including sensors and actua-
tors, by utilizing trigger-action rules (i.e., automation). Smart-
Things [38] is one of the most widely used and ubiquitous
IoT platforms, offering support for a diverse array of hub-
based and cloud-based IoT devices. Figure 2 shows how
devices and apps interact in the SmartThings platform using
an example. In this scenario where the app should turn on the
light because of the motion detection, the following sequence
of interactions ensues. (1) The motion detector sends its
state to the platform when the motion is detected. (2) The
platform then posts a motion detected event. (3) Given that
the smart application has subscribed to the motion detected
event and is programmed to react upon its receipt, the platform
transmits the event, signalling the occurrence of motion to the
application. (4) After receiving the event, according to the
app logic, it sends the command about turning the light on
to the platform. (5) Subsequently, the platform transfers this
command to the smart light device. (6) Further, when the light
is on, it sends its state to the platform. (7) Finally, the light is
on event is posted on the platform.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 4

TABLE I: Smart environment terminologies

IOC type Type Description
Device Event State Shows the IoT device changed state.

App Command Action Aims to change the status
of devices or locations.

App Subscription Action Allows a smart app to subscribe
for different events.

User Command Action Aims to change the status of
devices or locations as directed by users.

Mode Event State Shows a state change in a location
mode (e.g., away or vacation).

B. Challenges in Gathering Threat Intelligence from IoT En-
vironments

Given that existing IoT threat intelligence and CTI solutions
obtain traditional IOCs to produce threat reports, gathering
threat intelligence within an IoT smart environment might face
the following challenges.
• IoT devices often directly communicate with cloud services

or gateways. Consequently, first, collecting the atomic tradi-
tional network-based IOCs, such as IP addresses, domains,
URLs, etc., may be arduous or even infeasible. Second,
the computed IOCs, which are typically derived or calcu-
lated through complex algorithms like anomaly detection or
behavioral signatures, pose challenges for IoT devices due
to their lightweight nature and limited processing power,
storage, and memory. As a result, implementing complex
IOC detection mechanisms may lead to potential perfor-
mance issues or device failures. Lastly, the behavioral IOCs,
which often present as stages of an attack flow, cannot be
identified as there are no atomic or computed IOCs available
that characterize the behavior of a smart environment. As
a result, traditional IOCs mentioned above are not solely
enough for gathering threat information about incidents in
a smart environment.

• Device-app communication procedures in the IoT environ-
ment can be explained using specific terminologies pre-
sented in Table I. If we can identify which device-app
interactions led to the incident and occurred subsequently,
these interactions become potential IOCs as they might
constitute evidence related to the incident. Therefore, new
IOCs representing device events, app commands, app sub-
scriptions, etc., are associated with IoT-specific threats and
offer deeper insights into security incidents. However, their
extraction is non-trivial due to the absence of a direct map-
ping between device and app behavior in platform logs, and
manual log analysis demands significant concentration and
time. Consequently, retrieving IoT-specific IOCs relevant to
the incident and identifying their chronological connectivity
poses a significant challenge.

• Furthermore, our preliminary study (as shown in Figure 3)
identifies that most IoT security incidents involve both tradi-
tional and IoT-specific IOCs. Specifically, the graph depicts
the percentage distribution between IoT-specific and tradi-
tional IOCs in the generated threat intelligence for various
security incidents, with the total number of extracted IOCs
ranging from 3 to 403, as indicated on the X-axis. Overall,
IoT-specific IOCs contribute to approximately 50% of the

total count when threat intelligence report size exceeds
150. In contrast, reports with fewer extracted indicators
contain around 20-30% of IoT-specific IOCs. These statistics
underscore the substantial role of IoT-specific IOCs in threat
intelligence, highlighting that their exclusion may result in
missing critical threat information.
We address these challenges in Section III.

Fig. 3: Distribution between IoT-specific and traditional IOCs
in the obtained threat intelligence for various security incidents

Atomic IOC 2:
Siren CommandAtomic IOC 1:

Unlock Command

Behavioral IOC 2:
Precedent and

Subsequent Events
for Siren Command

Behavioral IOC 1:
Precedent and

Subsequent Events
for Unlock Command

Computed IOC: App-Device Interac�ons for Smart Home 1

Fig. 4: IoT-specific IOCs classification.

C. Classes of IOCs

Figure 4 demonstrates an example of incident-related threat
intelligence in a graph format showcasing newly introduced
IOCs and their interconnections. Within this scenario, Smart
apps 1 and 2 subscribed and received the smoke event that
was not detected. This triggered Smart app 1 to unlock the
smart lock device. In contrast, Smart app 2 sent siren and
strobe commands to the smart alarm. Moreover, Smart app
3 received the smart alarm siren event, which resulted in the
opened window, which deviates from expected smart home
behavior. App command IOCs highlighted with red color in
Figure 4 represent malicious activity, as in a normal scenario,
when no smoke is detected, the alarm devices should be in
the off state. Thus, we classify individual nodes that point
to an adversary activity as an atomic IOC. Specifically, in the
example scenario, atomic IOC 1 is an unlock command, while
atomic IOC 2 is a siren command. Furthermore, behavioral
IOCs usually combine atomic and computed IOCs and define
an attack pattern or various stages of malicious activity. Thus,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 5

we classify atomic IOC, together with its preceding and
subsequent events as a behavioral IOC as it presents a smart
home behavior pattern including nodes before and after the
malicious activity. Figure 4 illustrates two branches outlined
with dashed lines representing the behavioral IOCs 1 and 2.
Finally, we categorize the complete graph outlining device-
app interactions pertaining to a specific incident as a computed
IOC. This IOC may encompass atomic and behavioral IOCs,
necessitating multiple steps for its generation, as elaborated in
Section III-C of this paper.

D. Threat Model and Assumptions

In the context of smart home environments, security
breaches can occur through various means, such as taking
advantage of vulnerabilities within the IoT platform, smart
applications, or the devices themselves. This research paper
primarily relies on data recorded by the IoT platform for the
purpose of threat intelligence generation. If certain platform
logs are incomplete or not present, IoTINT is not focused to
detect them and hence it might lead to inaccurate/incomplete
threat intelligence generation. In this work, we consider, the
main threats that lead to the security incidents inside the smart
environment are as follows [43]. (i) Malformed/compromised
smart apps: Third-party apps can be installed on the IoT
platforms, which can acquire unnecessary extra privileges
during the installation time to perform undesired actions. Note
that installation of smart apps does not necessarily involve
downloading Android/iOS apps locally (e.g., accessible from
a web browser). Instead, they run on third-party servers and
can subscribe to platform events, which allows them to gain
control over connected IoT devices. (ii) Vulnerable/malformed
devices: We also include the threats from the devices with
hardware or firmware vulnerabilities that attackers might ex-
ploit. For our experiments in this paper, due to the availability
of a particular dataset, we mainly consider the scenarios with
the malformed/vulnerable smart apps.

III. OUR SOLUTION

This section presents the IoTINT methodology.

A. Approach Overview

Figure 5 illustrates a high-level overview of the IoTINT
approach in four major steps. First, to enable logging without
code instrumentation (to overcome the limitations of existing
works, e.g., [17]) and use them for the purpose of obtaining
threat intelligence, IoTINT collects raw data from devices and
apps through the platform, categorizes device/app-specific logs
from raw data, and constructs the database of logs and map-
ping rules (detailed in Section III-B). Second, to identify inter-
actions between devices and apps during the reported security
incident, IoTINT initiates an iterative connectivity session that
utilizes the database of logs and the mapping rules to extract all
relevant IoT-specific IOCs, both preceding and subsequent to
the incident (detailed in Section III-C). Third, to provide more
comprehensive insight into understanding the incident, IoTINT
combines the IoT-related IOCs acquired in the earlier step with

the traditional IOCs, including the CVEs, CWEs, and CAPECs
related to the incident (detailed in Section III-D). Finally, to
enable various use cases, IoTINT produces threat intelligence
reports in various formats (detailed in Section III-E) and then
applies graph-based reports suitable for manual inspection for
incident response, and machine-readable reports for automated
vulnerability assessment (Section VI).

B. Enabling Logging and Defining Mapping Rules

Enabling Logging. This step is to allow the logging of
threat-related information, such as device-app interactions and
to prepare raw data to become a future threat intelligence.
Specifically, as a first step, we enable logging to source
raw data from the IoT platform, encompassing interactions
among devices, applications, and users without using code
instrumentation. While code instrumentation could capture
smart environment activities and their correlations (e.g., smart
app activating light in response to a motion event), we target
to log just raw data of events recorded by the IoT platform and
interactions between third-party apps and the platform, as their
connectivity is established in further steps of the methodology.
In order to collect data, IoT platforms must employ monitoring
and management solutions, such as Amazon CloudWatch, to
capture and store JSON-formatted data for published device
events and the transferred data between the IoT platform and
the connected smart apps for each user’s account. Within our
implementation on the SmartThings platform, we establish
a proxy channel to gather data between the SmartThings
cloud platform and the server hosting the smart apps. This
channel intercepts all network traffic between the components
and monitors the exchanged data. Additionally, to capture
event logs from the platform, we establish a WebSocket
connection directly with the platform via the user account.
Since the raw data is unstructured and comprises various fields,
it necessitates preparation for utilization by other modules
within IoTINT. Thus, as a second step, IoTINT classifies raw
logs for each IoT device or smart app based on deviceIds,
appIds, eventSources and other attributes. Subsequently, we
reduce the size of stored logs by leveraging predefined lists of
fields, as not all the log attributes might be needed to produce
threat intelligence. Lastly, preprocessed potential attack-related
evidences are saved in the database.
Defining Mapping Rules. To define mapping rules that are for
identifying evidence pertinent to a security incident, we adopt
a manual effort due to the variability of mapping specifics
across different platforms. Thus, the researchers examined log
samples from a specific automation scenario within a smart
home environment to define the mapping rules that construe
the connectivity of app-device interactions in preceding and
subsequent directions. Note that this manual step of deriving
mapping rules only recur if IoTINT is ported to other IoT
platforms (than the SmartThings platform, for instance).
Example 1. Figure 6 illustrates the enabling logging step for
a smart home scenario, mirroring our motivating example,
in four major steps. In Step 1, as a result of data collec-
tion from Smart light, Smart garage door, Smart
camera, and Smart app1, the IoTINT receives the device

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 6

4. Producing Threat Intelligence Report

a) machine-readable for
automation

IoC1

IoC4

IoC2 IoC2

...

... ...

 Product
name

cve1

cwe1

capec1

Traditional Unique to IoT

cwe2

{
 type: IoC1
 indicator_type:
 device/app name:
 value:
 timestamp: "2023-..."

}

b) graph-based for manual inspection

Smart Environment

Platfrom Categorizing Device/App Logs

Extracting Device/App specific
Logs

Deriving Mapping Rules

1. Enabling Logging and
Deriving Mapping Rules

Mapping
Rules

DB of
Logs

2. Deriving Dynamic Connectivity
between IoT-specific IoCs

Mapping
Rules

DB of
Logs

Reported Security
Incident

NewSubsequent
IoC

New

Preceding

IoC

IoT-specific
IoCs related to

the Incident

3. Combining with traditional IoCs

IoC1

IoC4

IoC2 IoC2

... ...
Extracted IoT-
specific IoCs

Finding
device/app

specific
CPEs, CVEs,

etc.

Available
Databases

Integrating
found

CPEs,CVEs,...
info in the

graph

Incident

Raw
Data

Security
expert

IoTINT

...

CWE

CAPEC

CVE

CPE

Graph
OutputUse Case 1:

Incident Reponse
for known threats

Use Case 2:
Vulnerability

assessment for
unknown threats

Machine-
readable
Output

Other Use Cases
Output

Fig. 5: An approach overview of IoTINT.

and app events as raw inputs. In Step 2, leveraging key de-
tails highlighted in blue, such as event source, device
ID, and application ID, IoTINT classifies logs for cor-
responding devices and apps. In Step 3, IoTINT extracts
the deviceID, eventID, value and timestamp for
the Smart light and appID, deviceID and command
attributes for the malformed Smart app1, as prede-
fined by the device and app filters to transform logs into a
form of potential IOCs. In Step 4, we show mapping rules for
a simple automation rule involving Smart camera, Smart
light, and Smart app1. In this scenario, when the camera
detects motion, the app receives this event and triggers a
command to activate the light. We collect the logs after the
automation is executed and manually inspect each type of log,
such as device event about motion being detected by Smart
camera, app subscription about Smart app1 receiving the
event, app command about Smart app1 sending a command
to turn on the Smart light, and device event about Smart
light being turned on, to define the rules that connect these
logs chronologically. Specifically, for subsequent direction,
we define how to map the device event to the app
subscription, the app subscription to an app
command, and the app command to the device event.
Consequently, following the opposite chronological order, we
define the mapping rules for a preceding direction that con-
nects the device event to the app command or user
command, the app command to the app subscription
and the app subscription to the device event.

C. Deriving Dynamic Connectivity between IoT-specific IOCs

This step is to derive IoT-specific IOCs related to the
incident and establish their connectivity to offer insights into
the smart environment’s behavior. This step addresses the
challenge of laborious manual extraction of incident-related
artifacts due to many concurrent irrelevant events that appeared
at the time of the incident as well as the dynamic nature of

those relevant connectivities that are mainly defined by the
automation rules. First, we receive the incident description as
input from the user or the security expert and aim to pinpoint
the log record in the database that closely aligns with the
observed scenario. Thus, the found log record becomes the first
IOC related to an incident and a starting point to find other
related IOCs. Further, IoTINT proceeds to retrieve all IoT-
specific IOCs connected to this input IOC in both preceding
and subsequent directions. For this step, IoTINT utilizes the
mapping rules (e.g., described below as Rules 1 and 4) and
the database of logs that are identified in the previous step.
To provide further elaboration, the preceding direction aims
to identify all pertinent IOCs that occurred chronologically
before an identified initial IOC. Conversely, the subsequent
direction seeks to unearth all pertinent IOCs that transpired
chronologically after the initial IOC.

Upon examining the architecture and behavior of the plat-
form, we noted a consistent sequence of IOCs appearance in
a smart environment: user command → device event → app
subscription → app command → device event → repeat. This
sequence serves as a subsequent direction for IOCs search.
Conversely, a reversed sequence of IOCs would be followed
if IoTINT is searching for IOCs in a preceding direction.
These sequences are shown in Figure 7. Specifically, Figure 7a
illustrates the flow chart that IoTINT follows while conducting
a preceding direction search. In this process, the starting
IOC is a device event provided as input, which may result
from either user command or app command according to the
observed sequence. Thus, by leveraging the initial IOC data
to populate Rule 1, IoTINT constructs and executes a query
to the database, retrieving a new IOC relevant to the incident.
Subsequently, if the new IOC was found, IoTINT analogously
uses Rule 2 to identify the relevant app subscription IOC and
Rule 3 to identify the device event IOC. Note that if no IOC
is found, IoTINT stops the search, indicating that no more
relevant to the incident IOCs in this direction exist. Similarly,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 7

"description":"Smart light: light is off","date":"2023-09-29T23:07:12.662Z","value":"off",
"deviceId":"d55e8ecc-xxx", "eventSource":"DEVICE", ...
"description":"open command was sent to Smart garage door", "date":"2023-09-29T23:07:20.158Z",
"value":"open","deviceId":"d61a3c14-xxx","appId":"f625d89d-xxx",
"eventSource":"COMMAND", ...
"description":"Smart garage door: door is opening", "date":"2023-09-29T23:07:16.778Z",
"value":"opening","deviceId":"d61a3c14-xxx","eventSource":"DEVICE", ...
"description":"off command was sent to Smart camera","date":"2023-09-29T23:07:33.108Z",
"value":"off","deviceId":"9eb215d3-xxx","appId":"f625d89d-xxx",
"eventSource":"COMMAND", ...
"description":"Smart camera is off!","date":"2023-09-29T23:07:32.725Z",
"value":"off","deviceId":"9eb215d3-xxx","eventSource":"DEVICE", ...

+ ...

IoC type deviceId deviceProductName eventId value timestamp ...

device event
device event
device event

...

d55XXX
d55XXX
d55XXX

...

Taolight Smart Bulb
Taolight Smart Bulb
Taolight Smart Bulb

...

0k3XXX
e5tXXX

po5XXX
...

off
on
off
...

2023-09-29 xxx
2023-09-29 xxx
2023-09-29 xxx

...
...

device event
device event

...

d61XXX
d61XXX

...

Meross garage
Meross garage

...

0k3XXX
e5tXXX

...

open
close

...

2023-09-29 xxx
2023-09-29 xxx

...
...

IoC type appId appProductName deviceId comm. ...

app comm.
app comm.
app comm.

...

f62XXX
f62XXX
f62XXX

...

Magic Home Pro
Magic Home Pro
Magic Home Pro

...

d61XXX
9ebXXX
d61XXX

...

open
off

close
...

...

app comm.
app comm.

...

t5yXXX
t5yXXX

...

Ecobee
Ecobee

...

hy3XXX
 hy3XXX

...

siren
off
...

...

Device Fields to extract:
deviceId, deviceProductName, value,

timestamp, attribute, locationId, eventId,
name, eventSource, deviceTypeId, ...

App Fields to extract:
appId, appProductName, deviceId,

command, timestamp, locationId, name,
eventSource, permissions, AuthToken ...

1. Collecting Raw Data 2. Categorizing Logs

3. Extracting Device/App-specific Logs

+

Database
of Logs

Authors

Manual
inspection

App subscription Log:
Recieved motion
detected event

Device Event Log:
Smart camera

detected motion

App command Log:
Turn on the Smart

light

Device event Log:
Smart light is on

Autom
ation Logs Sam

ple

Subsequent Direction Rules
device
 event

app
 subscription

app
subscription

app
command

app
command

device
 event

... ...

Mapping Rules

Su
se

qu
en

t
D

ire
ct

io
n device event app subscription

app subscription app command
app command device event

Pr
ec

ed
in

g
D

ire
ct

io
n app command

or user command device event
app subscription app command

device event app subscription

Defining Rules

O
ut

pu
t

O
ut

pu
t

4. Deriving Mapping Rules

Fig. 6: An example showing the steps of enabling logging in a smart environment.

Start

no

yes

user
command/

app command
 exist?

device event user command/
app command app subscription

End

Rule 1 Rule 2 Rule 3
yes

app
 subscription

exist?

yes

device
event
exist?

no End no End

(a) Flow chart of preceding direction

Start

no

yesdevice event app subscription app command

End

Rule 4 Rule 5 Rule 6
yes

app
 command

exist?

yes

device
event
exist?

no End no End

app
 subscription

exist?

(b) Flow chart of subsequent direction

Fig. 7: Flow charts that IoTINT follows while deriving connectivity between IoT-specific IOCs

Figure 7b presents the flow chart followed by IoTINT while
conducting a subsequent direction search. IoTINT utilizes
Rule 4 to retrieve the app subscription IOC that happened
chronologically after the device event IOC. Analogously, Rule
5 and Rule 6 are used to find relevant app command and device
event IOCs.

In the following, we show how IoTINT represents mapping
rules to be used for this step. Due to the space constraint,
we only show two out of six rules. Specifically, Rule 1
corresponds to the rule that describes the mapping between
device event IOC and app command or user command IOC.
Rule 4 corresponds to the rule that maps the app subscription
IOC to the device event IOC.

Within Rule 1, the variable IOC1 represents the device
event, the variable IOC2 represents app command or user
command IOCs and IOCi represents a log entry from the log
collection, IOCs.

IOC1 = IOC2 ⇐⇒ IOC1{deviceId} = IOC2{deviceId} ∧
(IOC1{value} ⊇ IOC2{command} ∨
IOC1{attribute} = IOC2{command}) ∧
|IOC1{timestamp} − IOC2{timestamp}| ≤ 500ms,

IOCi ∈ Logs

(1)

According to this rule, the IOC2 can be mapped to the IOC1

if their deviceId field values are identical. Simultaneously,
the IOC2 command field should be a subset of the IOC1

value field or the IOC2 command field should match
the IOC1 attribute field. In addition to the above
conditions, these IOCs’ timestamp fields must differ by
500 milliseconds or less. According to the rule, the IoTINT
constructs a query utilizing the IOC1 data. Specifically,
given the IOCs are classified into the database tables
according to their type, the query should target to search
IOC2 in the app_command_table, which consists of
app command IOCs or the user_command_table,
consisting of user command IOCs (e.g., SELECT *

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 8

yes

IOC 6 - device event:
Smart Exterior Light is on

Start

no

End
following Rule 4

yes
app

 command
exist?

device
event
exist?

no

End

no

End

yes
app

 subscription
exist?IOC 1-device event:

Garage door opened

Device ID Attribute Value Timestamp Event Type

d61a3c14-afe5... door opened 2023-09-22T
22:03:47.947Z device_event

Device events table

IOC 2 - app subscription:
recieved Garage door

opened event

Query 1:
Is there an app subscription for
the device event, which
device id = "d61a3c14-..."
AND attribute = door
AND value = opened
AND eventType = device_event
AND timestamp ≤ 2023-09-
22T22:03:47.947Z+500ms?attributes

values

output
New

Device ID Attribute Value Timestamp Event Type Auth. Token Row number

d61a3c14-afe5... open opened 2023-09-22T
22:03:47.713Z device_event eyJraWQIsd5... 69

App subscriptions table

The most relevant to the incident
device event log - IOC 1:

Garage door opened

Input

IOC 3 - app command:
turn off Smart Camera

Query 2:
Is there an app command
for the IOC 2 - app
subscription, which fulfils
Rule 5?

IOC 4 - app command:
turn on Smart Exterior

Light

output

New

New

Query 3:
Is there an device event
for the IOC 3 - app
command, which fulfils
Rule 6?

Query 4:
Is there an device event
for the IOC 4 - app
command, which fulfils
Rule 6?

output

output

IOC 5 - device event:
Smart Camera is off

New

New

Fig. 8: An example of deriving dynamic connectivity between IoT-specific IOCs for the device event IOC (garage door
open) through IoTINT in subsequent direction.

FROM user_command_table...). In addition, IOC2

has to fulfill the conditions described by Rule 1, meaning
that the specific column values in a database table should
correspond to the IOC1 field values as specified in the
rule. Thus, the remaining query is structured as follows:
“WHERE deviceID=IOC1{deviceID} and (command
= IOC1{value} or ...”. Consequently, query execution
on the database of logs leads to the retrieval of the
pertinent IOC in a preceding direction (e.g., user command).
Subsequently, with newly acquired IOC IoTINT follows
the steps from Figure 7a until no further relevant IOCs
are discovered in the preceding direction. Following this,
the IoTINT moves on the subsequent direction search,
commencing from the same IOC utilized in the previous
phase. As the starting IOC relates to a device event and we
are looking for the following IOC, IoTINT utilizes Rule 4
that describes the connectivity between the device event IOC
and app subscription IOC, according to Figure 7b.

IOC1 = IOC3 ⇐⇒ IOC1{deviceId} = IOC3{deviceId} ∧
IOC1{attribute} = IOC3{attribute} ∧
IOC1{value} = IOC3{value} ∧
IOC1{eventType} = IOC3{eventType} ∧
|IOC1{timestamp} − IOC3{timestamp}| ≤ 500ms,

IOCi ∈ IOCs

(4)

Here, IOC1, IOC3 represent the device event and app sub-
scription IOCs, respectively and IOCi represents a log entry
from the log collection, IOCs. The rule defines that these
IOCs can be mapped if they occur within a specific period of
time (e.g., 500ms) and other attributes mentioned in the rule
are the same. Consequently, IoTINT populates the rule with
the IOC data fields to build a query. Execution of the query
retrieves the newly relevant IOC in the subsequent direction,
and the mapping process is being continued. In essence, the
IoTINT undertakes a comprehensive IOC extraction procedure
by iteratively pursuing both backward and forward directions
until all pertinent IOCs associated with the user’s input have
been revealed. The rest of the mapping rules (Rules 2,3,5,6)
that IoTINT uses to derive IoT-specific IOCs are present in
Appendix B to preserve the better readability of the paper.
Example 2. First, IoTINT receives the event log most
pertinent to the incident, which becomes an IOC 1. Within
this example, this log records the garage door opened device
event that happened at night (2023-09-22T22:03:47),

serving as input to IoTINT. Consequently, IoTINT initiates a
search for the relevant IOCs in the preceding and subsequent
direction, following the flow charts from Figure 7. Figure 8
illustrates an example of deriving dynamic connectivity
between IoT-specific IOCs in subsequent direction leveraging
the sequence depicted in Figure 7b. Initially, IoTINT retrieves
all attributes associated with IOC 1, such as Device
ID, Attribute, Value, etc., to facilitate further query
construction. Then, utilizing Rule 4, which defines the
linkage between device event IOCs and app subscription
IOCs and incorporating the data from the garage door opened
IOC, IoTINT constructs Query 1. This query aims to
identify any app subscription IOC in the database which
device id = "d61a3c14-..." AND attribute
= "door" AND value = "opened" AND
eventType = "device_event" AND timestamp
≤ 2022-09-22T22:03:47.947Z+500ms. IoTINT
ceases the search in this direction if no matching IOC is
found. Continuing with the example, IoTINT identifies a new
app subscription IOC 2, along with its associated attributes,
as the search progresses. Then, following the subsequent flow
chart, IoTINT generates Query 2 based on Rule 5 and the
attributes of IOC 2, such as authentication token
and row number. Execution of Query 2 against the log
database retrieves new app command IOCs. Specifically,
IOC 3 represents a command to turn off the smart camera,
while IOC 4 directs the smart exterior light to turn on.
Consequently, following Rule 6, IoTINT constructs Query
3 and Query 4 from the data associated with IOC 3 and
IOC 4, respectively. Upon executing these queries, IoTINT
retrieves two new device event IOCs, indicating the status
of the smart camera and smart exterior light as being off
and on, respectively. Thus, these are all new IOCs that can
be extracted for subsequent direction within this example.
The complete result of IoT-specific IOCs extraction for our
motivating example is shown in Section III-E.

D. Combining with Traditional Threat Intelligence IOCs

Those newer IOCs from the app-device dynamic connectiv-
ity (obtained in the previous step) need additional insights with
the help of traditional IOCs (e.g., CVEs, CWEs, and CAPECs)
to gain more detailed threat intelligence (as explained in
Section II). To that end, while finding corresponding CVEs,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 9

CWEs, and CAPECs for an IoT product (devices and apps),
we utilize Common Platform Enumeration (CPE) [44] repre-
sentations (as it includes both product details and their CVE
numbers). However, in this process, we face the following
challenges.

Challenges. CPE is a standardized naming format (e.g.,
cpe:2.3:a: eaton:halo home:1.11.4:*:*:*:*:android:*:*) that
comprises fields like vendor, product name, version, update,
etc. to help differentiate various products. Initially, we at-
tempted to map product names with their corresponding CPEs
using the CPE API’s keyword search functionality provided
by the NVD. This approach retrieves all CPE entries in which
all the provided keywords are present in their metadata title
or reference links. However, this method often fails to yield
results due to keyword discrepancies and the absence of spe-
cific keywords in the actual CPE metadata. For example, the
API call with the Fibaro motion sensor fgms-001
product name does not find any related CPEs only because
the keywords motion and sensor are not present in the
relevant CPE metadata, and the users are not aware of these
details while setting the names for their devices or apps.

Solution. To address this issue, we adopt an Natural language
processing (NLP)-based approach as follows. First, by lever-
aging a pre-trained transformer model [45], IoTINT computes
the embedding of all existing CPEs and stores them in a
database. Next, upon receiving the product name, it calculates
the embedding using the same model and further the similarity
scores between the product name and all existing CPEs and
shortlists the CPEs with the highest similarity scores. Then a
security analyst manually chooses the most relevant CPE(s), as
the number of CPEs varies, and IoTINT cannot recognize the
case when none of the CPEs in the shortlist are associated with
a product name. After we map traditional IOCs to the product’s
CPEs, we obtain all CVEs associated with each CPE through
a CPE API call to the CVE NVD database. Furthermore,
the content of each CVE includes CWE IDs, specifying the
weaknesses potentially leading to a particular vulnerability.
Additionally, CWE content encompasses Related Attack Pat-
terns, indicated by CAPEC IDs. These attack patterns serve as
valuable insights for security analysts, aiding in understanding
how adversaries exploit weaknesses. Consequently, IoTINT
retrieves CVEs, CWEs, and CAPECs associated with the
product names and structures into a hierarchical tree based
on their interconnections, facilitating the expansion of the
information about a threat. Finally, it combines the obtained
traditional IOCs with the IoT-specific IOCs to construct a
report of incident-related threat intelligence.

Example 3. Figure 9 outlines the steps involved in com-
bining IoT-specific IOCs with traditional IOCs, following our
example scenario. In Step 1, IoTINT extracts unique product
names (marked in blue) from earlier retrieved IoT-specific
IOCs related to the garage door being opened (GetNexx
garage door opener NXG-100B, Home assistant
app, Cellinx Camera, and Noooie Aurora Light
Bulb). In Step 2, for the GetNexx garage door
opener NXG-100B, the keyword-based API call gave no
results, leading to the utilization of the NLP-based ap-

GetNexx NXG-100B
 cpe:2.3:h:getnexx::nxg-100b: -:*:*:*:*:*
 CVE-2023-1748
 CWE-798
 CAPEC-191,
 CAPEC-70

IoC: user command, Command: open, Device: Garage Door, Timestamp: ...
 IoC: device event, Device: Garage Door, Product name: GetNexx NXG-100B, Value: opened, Timestamp: ...
 IoC: app subscribtion, Product name: Home assistant android, Subsc.value: opened, Timestamp: ...
 IoC: app command, Product name: Wink android, Device: Camera, Command: off, Timestamp: ...
 IoC: device event, Device: Camera, Product name: Cellinx Camera, Value: off, Timestamp: ...
 IoC: app command, Product name: Wink android, Device: Exterior Light, Command: on, Timestamp: ...
 IoC: device event, Device: Exterior Light, Product name: Noooie Aurora Light Bulb, Value: on, Timestamp: ...

GetNexx
NXG-100B

Home assistant

Cellinx Camera

cpe:2.3:h:getnexx:nxg-xxx:
CVE-2023-1748

CVE-2023-1748:
 CWE-798

CWE-798:
CAPEC-191
CAPEC-70

Home assistant android
 cpe:2.3:a:home-assistant:home_assistant_xxx
 CVE-2023-41898
 CWE-94
 CAPEC-35
 ...
 CWE-345
 CAPEC-111
 ...

Searching for
vulnerabilities,
 weaknesses,

attack patterns

cpe

co
nte

nt

cwe idcapec id

content

Search in Available Databases

Results

IoT-specific IoCs related to an incident

Noooie Aurora
Light Bulb

G
at

he
r u

ni
qu

e
pr

od
uc

t n
am

es
 fr

om
 e

xt
ra

ct
ed

 Io
C

s

1

3

R
ep

ea
t f

or
ea

ch
 p

ro
du

ct

Mapping product name with relevant CPEs

If no
results CPE

Dictionary

CVE API
Keyword Search:

Similarity scores

Preparation
step

If results

cpe:2.3:h:getnexx:
:nxg-100b: -:*:*:*:*:*

2

4

Pre-trained
tranformer model

Output

https://services.nvd.nist.
gov/rest/json/cpes/2.0

keywordSearch=
GetNexx NXG-100B GetNexx NXG-100B

embedding:
 [0.23, -0.32, 0.42, ...]

1. cpe:2.3:h:nightowl...:
[-0.76, 0.02, ...]
2. cpe:2.3:a:apache...:
[0.23, -0.35, ...]

 ...Database of
embeddings

0.85-cpe:2.3:h:getne..
0.73-cpe:2.3:h:nexxt..
0.72-cpe:2.3:h:nexxu..
0.71-cpe:2.3:o:nexxu..

Fig. 9: An example of combining IoT-specific IOCs related to
the garage door open incident with the traditional threat
intelligence IOCs

proach. Thus, the pre-trained transformer model calculates
the embedding of this door opener and IoTINT calcu-
lates individual similarity scores between the door opener
name and all CPEs. Then, the list of N CPEs exhibit-
ing the highest similarity scores with the product name is
shown to the security expert, facilitating the manual selection
of the most appropriate CPE(s). As a result, CPE entry:
cpe:2.3:h:getnexx:nxg-100b:-:*:*:*:*:* was
selected as the representation of this device. In Step 3, IoTINT
searches for the vulnerabilities, weaknesses and attack patterns
that are related to the identified CPE. Specifically, IoTINT
obtained CVE-2023-1748, associated with the CPE, through
the CVE API call to the NVD database. Within the content of
this CVE, IoTINT identified CWE-798, a weakness potentially
leading to the CVE-2023-1748 vulnerability. Furthermore,
the CWE content highlighted CAPEC-191 and CAPEC-70,
which are pertinent attack patterns. A procedure similar to the
one above for fetching traditional IOCs is replicated for all
other product names pertinent to this incident. As a result of
Step 4, the traditional IOCs are identified for the garage door
device and the smart application responsible for controlling
the smart camera and exterior light devices. Each retrieved
CVE, CWE, and CAPEC IDs are structured into a tree based
on their relationships, as illustrated in Figure 9.

E. Producing Threat Intelligence Report

The final step of IoTINT focuses on generating threat intel-
ligence reports in two distinct formats: machine-readable and
human-readable (i.e., graphical). The snippet of the machine-
readable report is included in Appendix A. Among the array
of machine-readable formats available, we select STIX as the
most optimal solution for storing and sharing threat intelli-

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 10

GetNexx NXG-100B
User command IoC

Command: open
Device: Smart Garage Door

TimeStamp: 2023-09-29T00:40:53.884Z

Device event IoC
Device: Smart Garage Door

Value: opened
Product Name: GetNexx NXG-100B

TimeStamp: 2022-09-29T00:40:54.084Z

App subscribtion IoC
App: Malicious smart app

Subscription. Value: opened
Product Name: Home assistant android
TimeStamp: 2022-09-29T00:40:54.284Z

App command IoC
Command: on

Device: Smart Exterior Light
Product Name: Home assistant android
TimeStamp: 2022-09-29T00:40:54.484Z

App command IoC
Command: off

Device: Smart Camera
Product Name: Home assistant android
TimeStamp: 2022-09-29T00:40:54.484Z

Device event IoC
Device: Smart Camera

Value: off
Product Name: Cellinx Camera

TimeStamp: 2022-09-29T00:40:54.884Z

Device event IoC
Device: Smart Exterior Light

Value: on
Product Name: Noooie Aurora Light Bulb
TimeStamp: 2022-09-29T00:40:54.884Z

cpe:2.3:h:getnexx:
:nxg-100b:-:*:*:*:*:*:*:*

CVE-2023-1748

Home assistant
android

cpe:2.3:a:home-assistant:
home_assistant_companion:

::*:*:*:android:*:*

CWE-798

CAPEC-191

CVE-2023-41898

CWE-345

CAPEC-111

CAPEC-141

CAPEC-148

CAPEC-218

CAPEC-70

...

CWE-94

CAPEC-35 CAPEC-77

...

...

Fig. 10: An example of a threat intelligence report in a visual
graph representation for the garage door open incident

gence [46]. To represent the threat intelligence report in the
STIX format, we use two types of objects: indicator, which
represents IoT-specific or traditional IOCs and relationship,
which specifies the connectivity (edges) between indicator
objects. The machine-readable format of the report can be
utilized for an automated incident response when a previously
observed threat is encountered and response procedures are al-
ready defined. In contrast, the human-readable format visually
represents derived artifacts related to the incident, facilitating
security professionals in a more efficient and comprehensive
analysis. Use cases demonstrating the further utilization of
these formats are detailed in Section VI through case studies.

Example 4. Figure 10 presents the threat intelligence re-
port in a human-readable format about the garage door
open incident from our motivation example. In this graphical
representation, the rectangular box with a red border shows
the initial log selected by the security analyst as the one most
closely aligned with the observed incident, which becomes
the starting IOC - specifically, the device event IOC, indicating
that the garage door was opened. Furthermore, other rectangu-
lar boxes denote incident-related IoT-specific IOCs, while the
oval-shaped boxes represent traditional IOCs, encompassing
vulnerabilities, weaknesses, and attack pattern IDs. The middle
part of the graph depicts that the garage door was opened
because of the user command. Subsequently, the commands
to turn off the camera and turn on the exterior light were
issued from the smart app Home assistant android.
This sequence of events raises suspicions from security analyst
about the smart app’s maliciousness, particularly as the camera
should always be in on state for security reasons. Moreover,
the vulnerabilities found in the smart app strengthen the secu-
rity analyst’s concerns regarding its potential maliciousness.
However, a critical question remains: How was the garage
door opened if no authorized smart home users initiated the
action? The oval part of the graph reveals that the garage
door device GetNexx NXG-100B has vulnerabilities, and
consequently, they might be exploited to send the garage door
opening command. To validate this hypothesis, security profes-
sionals must check the content of the relevant vulnerabilities.

Notably, within this example, the comprehensive report itself
is classified as a computed IOC, aligning with the taxonomy
outlined in Section II. Identified atomic IOCs encompass the
device event IOC indicating the door being open and the smart
app command IOC for disabling the camera, both of which are
potentially indicative of malicious actions. Lastly, the branch
extending from the top to the bottom left of the IoT-specific
graph nodes is designated as a behavioral IOC, encapsulating
smart home behavior intricately linked to the attack.

IV. IMPLEMENTATION

We implement IoTINT on the Samsung SmartThings plat-
form due to its support for a wide range of IoT devices
and open-source smart applications [34], along with extensive
documentation for developers [47] as follows.
Data Collection. In our setup, we establish a proxy channel
to facilitate data collection between the SmartThings cloud
platform and the server hosting the smart apps. This channel
is responsible for intercepting all network traffic exchanged
between these components and monitoring the data flow. To
create this channel, we employ a web debugging proxy tool
known as Fiddler Classic [48], which functions as both a for-
ward and reverse proxy. To monitor the data flow between the
smart apps and the SmartThings cloud platform comprehen-
sively, we deploy a forward proxy to track commands and API
calls initiated by the smart apps. Simultaneously, we utilize a
reverse proxy to monitor webhook requests originating from
the IoT platform. Our monitoring extended to network traffic
over the application layer, specifically HTTPS, and for this, we
use our server certificates with Fiddler to decrypt the traffic. In
addition to this, to capture event logs from the IoT platform,
we establish a WebSocket connection with the platform via
the SmartThings Groovy IDE account [49]. Subsequently, we
employ Fiddler Classic to monitor, gather, and decrypt all
WebSocket data transmitted from the platform to our server.
Following the data collection phase, IoTINT undergoes raw
application and device logs pre-processing by categorizing and
extracting specific fields from each log entry. Subsequently,
various log types are stored in an SQLite database, enabling
their further extraction as IOCs.
Traditional IOC Extraction. To derive traditional IOCs, we
leverage accessible CPE Dictionary, CVE NVD, CWE, and
CAPEC data sources. Our approach involves employing the
CPE API with the keywordSearch parameter [50] to identify
CPEs associated with product names. Furthermore, we utilize
the CVE API’s cpeName parameter [51] to find the relevant
CVEs linked to each identified CPE. The other relationships
between traditional IOCs are extracted from their content.

To implement the proposed alternative solution for mapping
product names with CPEs discussed in Section III-D, we
utilize the jinaai/jina-embeddings-v2-base-en [52] pre-trained
transformer model to generate embeddings for all existing CPE
strings in the dictionary. The resulting database file containing
CPEs and their embedding occupies 18 GB. Consequently,
the data extraction takes 12 minutes while calculating cosine
similarities between the product name and CPEs to identify the
most relevant matches required an additional three minutes.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 11

This considerable time overhead for each product name →
CPE mapping presents a significant optimization challenge
that needs to be addressed.

To address the aforementioned challenge, we turn to the
Facebook AI Similarity Search (FAISS) library [53], lever-
aging its capabilities for efficient similarity searches. FAISS
operates by constructing an index, a RAM-based data struc-
ture, from a collection of vectors xi in a specified dimension,
d. Once this structure is established, given a new vector x in
dimension d, it efficiently performs the operation:

j = argmini||x − xi|| (5)

where ||.|| represents the Euclidean distance (L2). Thus, FAISS
operates by returning the k nearest neighbours—essentially,
the most pertinent CPEs relevant to the given product name.
After implementing this optimization technique, the index data
structure size decreased notably to 6.72 GB, substantially
reducing the time required to read the .index file to 7.5
seconds. Moreover, the extraction of k nearest neighbours is
achieved in less than a second. As a result of these improve-
ments, we keep this optimization strategy, as it significantly
alleviates both storage constraints and processing time without
compromising accuracy.
Report Generation. When IoTINT retrieves all the IoT-
specific and traditional IOCs and their connectivity, we utilize
anytree Python library [54] to store the gathered threat intel-
ligence in a tree data structure format. Subsequently, IoTINT
produces reports in visual and machine-readable formats. To
visually represent IoT threat intelligence for a specific incident,
we employ the graphviz Python library to create a graph.
In addition, to generate a machine-readable report in STIX
format, we leverage the cti-python-stix2 library.

V. PERFORMANCE EVALUATION

This section first discusses our experimental settings and
then presents our evaluation results to measure IoTINT’s
performance (in terms of accuracy, overhead, and usability).

A. Experimental Setting

Testbed Configuration. We deploy IoTINT on a desktop
machine on Windows 10 Enterprise OS equipped with an
Intel Core i7-10700 2.90 GHz processor and 32 GB of RAM.
The implementation of IoTINT in Python leverages Graphviz
[55], Node.js [56], FAISS [57] libraries and jinaai/jina-
embeddings-v2-base-en [45] pre-trained transformers model.
SQLite is used as a database, and real accumulated data
is utilized in the threat intelligence generation process. To
mimic the behavior of actual IoT devices in a smart home, we
employ SmartThings IDE [49] that facilitates the simulation
of device actuators and sensors as similar to prior studies [16],
[17], [58], [59]. We also install ten distinct smart applications,
each offering various functionalities, and simulate malicious
scenarios within our setup.

Dataset Description. In this paper, we evaluate the perfor-
mance of IoTINT using two types of datasets: a normal
behavior dataset and an attack dataset.

TABLE II: Description of the attack datasets

Attack Datasets Incident
Number

of Incident
Occurrences

Average
Size of
Reports

A1: System
Events [16]

Camera footage is black as
exterior light was turned off 7 90

A2: Undesired
Unlocking [35]

The door was unlocked during
the night without any reason 3 46

A3: Side
Channel [16]

Burglary. Neighbours noticed
that the light was strobing
for 1 min in the evening

6 142

A4: PinCode
Injection [34]

The lock PINcode was changed
without the user’s knowledge 4 17

A5: Adware
Notification [16]

Notification with suspicious
advertisement to download

malicious app
5 22

A6: App
Update [16]

The lock device got uncharged
but user didn’t receive

any notification.
3 6

A7: Remote
Command [16]

Users accidentally found out
about the fire in the kitchen.
The fire alarm didn’t work.

6 44

A8: Remote
Control

[16], [36]

The alarms are launching
siren without any reason 4 50

A9: Spoof
Mode Event

[34], [37]

The location mode is
randomly changed

during the day
7 320

A10: Spoof
Mode Event and
System Events

[34], [36]

Locks are unexpectedly
unlocking during the day
without user awareness

8 11

The normal behavior dataset represents everyday normal in-
teractions between smart home devices, apps, the IoT platform,
and users. The purpose of this dataset is to assess the overhead
(e.g., runtime, storage, and memory) on a relatively large
volume of data. This dataset encompasses 50 IoT devices and
sensors, totalling approximately 20 MB logs and containing
over 3,400 events. To replicate a smart home environment,
we employ simulated IoT devices, which are originally free
from vulnerabilities or misconfiguration. Thus, to enable the
extraction of traditional IOCs, we assign real product names
to each device, with an emphasis on including a majority of
vulnerable products to enhance realism. Consequently, out of
the 50 IoT devices in the typical dataset, 36 are labelled with
the names of vulnerable products, while the remaining 14 IoT
device names do not indicate any vulnerabilities. Furthermore,
these devices and sensors are managed by four smart apps with
varying automation logic, to which we also assigned actual
names of vulnerable apps. While developing these smart apps
with the Node.js language, we leverage the logic of 181 open-
source SmartThings apps [38].

In contrast, the attack dataset incorporates both malicious
behaviors and regular activities for 10 different attacks. The
purpose of this dataset is to evaluate the capability of IoTINT
to generate threat intelligence about a particular security inci-
dent. In contrast with the normal dataset, each attack dataset is
smaller, featuring fewer than 23 IoT devices and sensors, with
a size of less than 4 MB and containing around 400 events.
We develop 10 smart apps capable of carrying out the attacks
documented in recent attack papers [16], [34]–[37] and also
assign real names of vulnerable smart apps to them. Each of
these applications performs the specified attack concurrently
with the regular smart home behavior, resulting in ten distinct

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 12

(a) IoT-specific IOCs (b) Traditional IOCs

Fig. 11: Distribution of various IOCs

attack datasets, which are summarized in Table II.

B. Validation with Existing Works

In Figure 11, we provide the distribution of different types
of IOCs within both IoT-specific and traditional categories.
The graphs show the quantity of various IOC types relative to
the overall number of IOCs in the threat intelligence reports
produced by IoTINT from the typical dataset. We share these
findings not only to contribute to our own research but also to
offer insights for future works in this domain. Researchers in
the field can leverage the distribution of various IOC types to
customize their threat intelligence solutions in IoT. The results
are further validated with state-of-the-art works.

Figure 11a illustrates that the most prevalent IoT-specific
IOC types are application command and device event, with
slightly less popularity attributed to application subscription
IOCs. On the other hand, the least common IOC types, each
appearing either once or not at all in the output, are user
command and mode event IOCs. To validate such distribution
of IoT-specific IOCs, we compare the outputs of a state-
of-the-art work, ProvThings [17], with the IoTINT outputs.
To make a comparison, we extracted all five reported use
cases by ProvThings and derived the only device/app behavior
nodes from their graphs as they additionally detect smart app
function calls. Consequently, we analyze the quantity of nodes
describing smart environment behavior (e.g., app command,
device event) produced by ProvThings in comparison to the
number of various IOCs extracted by IoTINT. The validation
results are presented in Table III. The blue-coloured numbers
denote the number of nodes extracted from ProvThings graphs,
while the green-coloured numbers represent the IoTINT IOCs
from similar use cases. In most use cases, both solutions
exhibit equality in their results. However, there are instances
where IoTINT extracts more IOCs, such as in UC5. While this
could potentially be considered a false positive, it is notewor-
thy that ProvThings provides only preceding information to the
input incident. Thus, if the open command for the window is
considered an incident, the tool will show that it happened
because of the detected smoke event. In contrast, IoTINT
also reveals the smart home activity following the initiated
command, such as an opened window event. In summary, our
results align with the trends observed in ProvThings regarding
the prevalence of IoT-specific IOCs.

TABLE III: Validating IoT-specific IOCs extraction with
ProvThings work [17]. Blue-coloured numbers denote the
number of nodes of extracted from ProvThings graphs, while
the green-coloured numbers represent the IoTINT IOCs from
similar use cases

Incident
(Use Cases)

Number of IOCs of a particular type
App

command
Device
event

App
subscription

Mode
event

User
command

Kitchen light was turned
on by Apple HomeKit

app (UC1)
1 1 2 2 1 1 0 0 0 0

Unintended unlock door
event for a front door

(UC2)
2 2 2 2 1 2 1 1 0 0

PIN code leakage (UC3) 3 3 6 6 2 2 0 0 0 0
Fake smoke event (UC4) 4 4 4 4 1 1 0 0 0 0

Window opened by
SmokeMonitor (UC5) 1 1 1 2 1 1 0 0 0 0

TABLE IV: Validating traditional IOCs extraction with
BRON’s graph work [60]. The cells provide an average
number of IOCs of one type (e.g., CVEs) connected to one
IOC of another type (e.g., CPE).

CPE → CVE CVE → CWE CWE → CAPEC
BRON [60] 1-2 0-1 8

IoTINT 1-2 1 4

Figure 11b shows that CAPEC IOCs constitute the largest
share of traditional IOC types, with individual reports contain-
ing as many as 150 CAPEC IOCs. Conversely, the number of
CVE and CWE IOCs in the report exhibits a lower but more
consistent trend, with counts reaching up to 38. In comparison,
the report typically contains a maximum of 18 extracted CPE
IOCs, particularly in those with a significant number of nodes.

To verify the distribution of traditional IOCs, we refer-
ence the work by Hemberg et al. [60], which produces the
BRON’s graph. Specifically, this work links MITRE TTPs,
CWEs, CVEs, CPEs, and CAPECs, presenting all entities and
relationships as a graph. To compare traditional IOCs produced
by IoTINT with the BRON’s graph, we calculate the average
number of IOCs connected to one IOC type (e.g., CPE, CVE)
directionally, from CPE to CAPEC. The comparison results
are outlined in Table IV. The column CPE→CVE displays
the average number of vulnerabilities relevant to one CPE.
The column CVE→CWE illustrates the average number of
weaknesses associated with one CVE. Finally, the column
CWE→CAPECs presents the average number of CAPECs
connected to one weakness. In addition, some results are
depicted as a range (e.g., from 0 to 1) since the number of
connected IOCs cannot be fractional. The table indicates that
the amount of CPEs, CVEs and CWEs should be similar,
varying a maximum of two times, while the number of
CAPECs exceeds several times. Note that the number of
connected CAPECs to a single CWE differs between BRON’s
graph and IoTINT due to our utilization of a limited number
of devices and apps, resulting in a slightly less accurate result.
In summary, our findings corroborate the trends observed in
BRON’s graph regarding the prevalence of traditional IOCs.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 13

TABLE V: Coverage of IoTINT approach in comparison with
LSTM approach in IoT-specific IOCs identification. Tradi-
tional IOCs coverage by IoTINT.

Attack
Datasets

Ground
Truth IoT-specific IOCs

Traditional
IOCs

Io
T-

sp
ec

ifi
c

IO
C

s
Tr

ad
iti

on
al

IO
C

s

IoTINT
Approach

LSTM-based
approach

Attack-specific
Training

Accumulated
Training

A1 40 1 40 (100%) 28 (70%) 5 (12.5%) 1 (100%)
A2 29 9 29 (100%) 10 (34.5%) 7 (24.1%) 9 (100%)
A3 141 1 141 (100%) 113 (80.1%) 54 (38.3%) 1 (100%)
A4 8 9 8 (100%) 6 (75%) 4 (50%) 9 (100%)
A5 6 9 6 (100%) 4 (66.7%) 3 (50%) 9 (100%)
A6 4 1 4 (100%) 3 (75%) 2 (50%) 1 (100%)
A7 3 0 3 (100%) 3 (100%) 2 (66.7%) 0 (100%)
A8 394 9 394 (100%) 157 (39.8%) 62 (15.7%) 9 (100%)
A9 35 42 35 (100%) 22 (62.9%) 11 (31.4%) 42 (100%)

A10 24 1 24 (100%) 11 (45.8%) 3 (12.5%) 1 (100%)

C. Accuracy

Coverage of IoTINT in Identifying IOCs. The experimental
results of IoTINT coverage in identifying IOCs are present in
Table V. To evaluate the ability of IoTINT to produce accurate
threat intelligence, two authors of this research collaborated
to establish ground truth for 10 distinct attack scenarios. First,
they independently examined each attack implementation, and
one of them covered a coding part. Another person was
tasked with manually constructing reports illustrating IOCs
and their interconnections based on data collected from the
IoT platform. Finally, the coder and report constructor met
to validate the accuracy of the outputs generated by IoTINT
using the manually constructed reports of IOCs. We evaluate
IOC coverage by measuring the percentage of all nodes
and edges in the IoTINT report in comparison with the
ground truth (similarly, as other related works, e.g., [17]).
The ground truth is divided into two parts: nodes representing
IoT-specific IOCs and traditional IOCs. Table V shows the
IOC coverage of our work based on different attack classes.
The “IoTINT Approach” under the “IoT-specific IOCs” header
and “Traditional IOCs” columns reflect the number of IOCs
in the reports generated by IoTINT for various incidents and
coverage percentage. When the number of traditional IOCs
equals zero, it indicates the absence of vulnerable devices or
apps relevant to the incident. The comprehensive ground truth
metrics demonstrated that the IoTINT consistently recovered
100% of the relevant IOCs related to each incident. This
robust performance underscores the effectiveness of the tool
in accurately identifying and extracting IOCs in diverse attack
scenarios we have implemented for this work.

Comparison with ML-based Approach. In addition to these
experiments, we compare the IoTINT rule-based approach
with an ML-based approach where an LSTM model is uti-
lized in identifying incident-related IoT-specific IoCs. We use
LSTM for this experiment, as it can capture long-term sequen-
tial dependencies that is what we need for our context in smart
home. Smart home behavior consists of command and event

sequences that trigger smart applications and change device
states. In future work, we plan to explore other sequence-based
approaches (e.g., Transformer). To conduct these experiments,
we first converted the logs from ten attack datasets and the nor-
mal behaviour dataset into a “word” format. For instance, the
device event log about the smart light being in an off state was
converted to de_sl1_off word, where de_ specifies the log
type (e.g., device event, app command, app subscription, etc.),
sl1_ depicts the smart IoT device (e.g., smart camera, smart
lock, etc.) and off represents the device state. Analogously,
the word ac_sa5_lock_slo2 describes the app command
(ac_) log about smart app 5 (sa5_) sending a lock command
to the smart lock (slo2). Similarly, other log types were
converted into corresponding word formats. Subsequently, we
sorted all words in each dataset based on their timestamps
to generate sequences of smart home activities. Then, we
trained individual LSTM models for each attack dataset (A1-
A10). Additionally, we conducted accumulated LSTM training
on the data that included the normal behavior logs sequence
along with the sequences from the ten attack datasets. To
compare the coverage of the IoTINT approach with the LSTM
approach, we input a word representing the incident-related
IOC (specific to each attack) into the model and request it to
predict the next N words. From the predicted words, we count
only those that match the IOCs detected as incident-related by
the IoTINT.

Table V illustrates the outcomes of the experiments con-
ducted using the LSTM-based approach. The “Attack-specific
training” column under the “LSTM-based approach” header
depicts the number of incident-related IoT-specific IOCs cor-
rectly predicted by the models separately trained on each
attack dataset and the percentage according to the IOCs
detected by IoTINT. In contrast, the “Accumulated training”
column presents the number and percentage of incident-
related IoT-specific IOCs correctly predicted by the model
trained on the accumulated data, including normal behavior
and attack dataset logs according to the IoTINT. Overall, the
LSTM-based approach shows lower coverage compared to the
IoTINT. Specifically, the coverage achieved through attack-
specific training varies from 34.5% to 75%, with one instance
reaching 100%, while the accumulated training coverage drops
to a range of 12.5% - 66.7%. Such statistics can be explained
by considering the density of attack behaviors. The model
trained on a specific attack dataset can capture more attack-
related evidence, while the model trained on the accumulated
data is overwhelmed with the variety of different automation,
hindering its ability to learn dependencies related to attack-
specific IOCs. In summary, the LSTM-based approach shows
lower coverage than the IoTINT rule-based approach in ex-
tracting related to the incident IOCs. Furthermore, the LSTM
model struggles to learn complicated dependencies to predict
parallel sequences (e.g., a tree format). Thus, the experiments
underscore the significance and necessity of the IoTINT rule-
based approach.

Measuring the Accuracy of Mapping CPEs to Products.
Table VI illustrates the accuracy of IoTINT in identifying
CPEs representing specific product names using our approach

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 14

TABLE VI: The F1 score values with different threshold values for 19 IoT products.
T

hr
es

ho
ld

A
gs

ho
m

e
sm

ar
t

al
ar

m

A
to

m
te

ch
sm

ar
t

lif
e

an
dr

oi
d

ap
p

C
el

lin
x

IP
ca

m
er

a

E
at

on
ha

lo
ho

m
e

ap
p

Fi
ba

ro
M

ot
io

n
Se

ns
or

FG
M

S-
00

1

G
lu

e
Sm

ar
t

do
or

L
oc

k

Is
m

ar
tg

at
e

ga
ra

ge
do

or
op

en
er

M
ag

ic
H

om
e

Pr
o

ap
p

M
er

os
s

ga
ra

ge
do

or
op

en
er

M
SG

10
0

M
i

xi
ao

m
i

L
E

D
D

es
k

L
am

p

N
ig

ht
ow

l
sm

ar
t

do
or

be
ll

O
pe

nH
A

B
2.

5.
11

ap
p

Se
ng

le
d

e1
e-

g7
f

L
ig

ht
sw

itc
h

Sy
sk

a
Sm

ar
t

B
ul

b

Ta
oL

ig
ht

Sm
ar

t
lig

ht
B

ul
b

V
iv

in
t

Sk
yC

on
tr

ol
pa

ne
l

W
A

FU
Sm

ar
t

L
oc

k

W
em

o
In

si
gh

t
Sm

ar
t

Pl
ug

W
em

o
sw

itc
h

28
b

0.01 0.67 1.00 0.50 1.00 0.67 0.67 0.67 1.00 0.80 1.00 0.67 0.33 0.33 0.67 1.00 1.00 0.67 1.00 1.00
0.012 0.67 1.00 0.50 1.00 1.00 0.67 0.67 1.00 0.80 1.00 1.00 0.33 0.33 0.67 1.00 1.00 0.67 1.00 1.00
0.014 1.00 1.00 0.50 1.00 1.00 0.67 0.67 1.00 0.80 1.00 1.00 0.33 0.33 0.67 1.00 1.00 1.00 1.00 1.00
0.016 1.00 1.00 0.50 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 0.33 0.33 0.67 1.00 1.00 1.00 1.00 1.00
0.018 1.00 1.00 0.50 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.57
0.02 1.00 1.00 1.00 1.00 1.00 0.67 0.67 1.00 0.75 1.00 1.00 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.57

0.022 1.00 1.00 1.00 1.00 1.00 0.67 0.67 1.00 0.75 1.00 1.00 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.57
0.024 1.00 1.00 1.00 1.00 1.00 0.67 0.67 0.33 0.75 1.00 1.00 0.33 0.33 1.00 1.00 1.00 1.00 1.00 0.57
0.026 1.00 1.00 0.75 1.00 1.00 0.67 0.57 0.33 0.75 1.00 1.00 0.33 0.33 1.00 1.00 1.00 1.00 1.00 0.57
0.028 1.00 1.00 0.75 1.00 1.00 1.00 0.57 0.33 0.75 1.00 1.00 0.33 0.33 1.00 1.00 1.00 1.00 1.00 0.57
0.03 1.00 1.00 0.75 1.00 1.00 0.57 0.57 0.33 0.75 1.00 1.00 0.33 0.33 1.00 1.00 1.00 1.00 1.00 0.57

0.032 1.00 1.00 0.75 1.00 1.00 0.57 0.57 0.33 0.75 1.00 1.00 0.33 0.33 1.00 1.00 1.00 1.00 1.00 0.57
0.034 1.00 1.00 0.75 1.00 1.00 0.57 0.57 0.33 0.75 0.57 1.00 0.33 0.33 1.00 1.00 1.00 1.00 1.00 0.57

in Section III-D. To evaluate the accuracy of this approach,
we conduct experiments on 19 real IoT products with varying
threshold values from 0.01 to 0.034 with step 0.002 and
calculate F1 scores. For each product name, we manually
define the ground truth by checking each CPE option and
the product it represents from the Internet. In evaluating the
threshold, we aim to minimize FP and FN to mitigate the
costs associated with additional or missing incident-related
data. While including irrelevant CPEs is considered non-
critical, the omission of CPEs representing the product name
is deemed crucial, as it potentially results in the loss of
vital information about devices or applications and incomplete
threat intelligence. The F1 score is selected as the evaluation
metric for its balanced consideration of both FPs and FNs, in
contrast to accuracy metrics that treat the identification of one
extra CPE and the loss of one CPE equivalently.

Table VI presents the F1 scores corresponding to 13 thresh-
old values ranging from 0.01 to 0.034 for 19 device names,
where F1 scores reaching one are highlighted in green. Ad-
ditionally, the device name columns for which F1 scores
never reach one are highlighted in yellow, indicating that the
threshold approach fails to map these device names with CPEs
accurately. Unfortunately, no single threshold universally en-
sures the highest accuracy for all device names due to their
variation and different amounts of relevant CPEs. However,
we highlight the threshold 0.016 row with a darker green
colour as it achieves 100% accuracy for the majority of devices
(13). Hence, within these experiments, 0.016 emerges as the
threshold that provides the most accurate results among these
19 device names.

Statistics for IOC Classes in the Attack Datasets. Figure 12
illustrates the number of IOCs detected across attack datasets
A1-A10, categorized into classes, such as atomic, computed,
and behavioral. As previously discussed, we defined atomic
IoT-specific IOCs as single graph nodes that present malicious
activity. Behavioral IOC is one or more branches of the graph
that includes the atomic IOC and preceding and subsequent
IOCs to the incident. Lastly, computed IOC constitutes a
full threat intelligence report produced by IoTINT about the

Fig. 12: Number of different IOC types detected while gener-
ating threat intelligence for the attack datasets

incident. These statistics were collected only from the incident
reports, the quantity of which varies depending on the nature
of the attack, and are presented in Table II.

Thus, the number of computed IOCs for each attack equals
the number of processed incident occurrences by IoTINT and
stays in the range from three to eight. The number of behav-
ioral IOCs ranges from one to eight, while the count of atomic
IOCs may vary from modest numbers under 10 to higher
figures like 45 or 70. Such fluctuations are tightly related to
the specifics of each attack scenario. For instance, while some
attacks may involve only a single malicious command, others
may feature a multitude of malicious commands executed by
a compromised application, such as altering the brightness of
a light to convey a message via strobe patterns.

D. Performance Overhead

1) Time Overhead: For this experiment, we consider that
each device event in a typical dataset with more than 3400
events is potentially a security incident, and we intend to
generate threat intelligence for each of these incidents. IoTINT
requires around four hours to complete the threat generation
for 3,400 incidents. While this may seem lengthy, it’s im-
portant to note that in practical situations, the percentage of
incidents amongst all observed events is much less, as we took
the most extreme case. For instance, if incidents constitute

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 15

(a) Time overhead (b) Time for malicious datasets

Fig. 13: Time overhead of IoTINT in threat intelligence
generation

only 1% of all events in a typical dataset, IoTINT would be
required to generate threat intelligence for 34 incidents, which
will take around 2.5 minutes.

Figure 13a illustrates the time required for extracting IOCs
for the reports consisting of 3 to 403 IOCs. The figure demon-
strates that IoT-specific IOCs can be extracted more quickly
than traditional IOCs. Specifically, the extraction time for IoT-
specific IOCs varies from 1 to 6 seconds, while traditional
IOCs take from 3 to 13 seconds, depending on the report size.
Overall, the total time to generate threat intelligence for a
single smart home incident ranges from 3 to 18 seconds.

In Figure 13b, we provide a breakdown of the time IoTINT
requires to produce attack-related threat intelligence for ten
different attack datasets labelled as A1-A10. Each attack
dataset contains an observed incident, whose description and
a number of occurrences are provided in Table II. To ensure
comprehensive threat intelligence generation for each attack,
IoTINT must generate reports for every instance of an incident
within a dataset.

In addition, security professionals may be interested in
understanding only the cause of the incident, meaning attack
evidence that appeared before the incident. Alternatively, they
might be concerned with only the consequences of the at-
tack, meaning the attack-related behavior happened after the
incident. Thus, Figure 13b displays the time IoTINT takes to
produce the preceding and subsequent to the incident threat
intelligence with yellow and green colours, respectively. The
blue bar illustrates the overall time spent producing complete
threat intelligence for attack datasets ranging from A1 to
A10. Note that for certain attack datasets, IoTINT exclusively
generated either preceding or subsequent threat intelligence,
indicating the absence of attack evidence in the opposite
direction. Additionally, the time spent to produce preceding,
subsequent and full threat intelligence varies from 2 to 32
seconds, 2 to 26 seconds and 3 to 37 seconds, respectively.
Notably, the summary of time spent to produce preceding and
subsequent threat intelligence does not equal the time of full
threat intelligence due to the separate extraction of traditional
IOCs, which requires more time, as depicted in Figure 13a.
Attack datasets A1, A3, and A9 show longer processing times
for extracting threat information compared to other datasets
due to the larger report sizes detailed in Table II. Specifically,

(a) Storage overhead (b) Memory overhead

Fig. 14: Resource overhead of IoTINT in threat intelligence
generation

for the datasets A1, A3, and A9, IoTINT generated reports
with an average of 90-142, and 320 recovered nodes, while
other datasets’ report sizes are smaller.

2) Storage Overhead: Figure 14a provides an overview of
the storage cost incurred by IoTINT’s report based on the
number of processed incidents. When the tool generates a
machine-readable report as a .txt file, it consumes approxi-
mately 120 MB of storage for 3,400 incidents. On the other
hand, the graph report presented as a .pdf file requires 260 MB
of storage for the same number of incidents. Combining both
report types, namely the machine-readable and visual formats,
results in a total storage usage of 360 MB for 3,400 incidents.

3) Memory Overhead: Figure 14b illustrates the typical
runtime memory consumption of IoTINT depending on the
produced report size. The memory overhead of IoTINT is
displayed for incidents with varying final report sizes. Notably,
our tool demonstrates memory efficiency, utilizing less than
105 MiB of memory for various reports consisting of 3 to
403 nodes. Specifically, the algorithms that separately extract
only IoT-specific IOCs, traditional IOCs or both use a very
similar amount of memory, maintaining a consistent memory
footprint.

E. Usability Study

To assess the practicality of the manual effort needed for
our approach in Section III-D, a usability study is conducted
involving nine participants comprising Master’s and PhD stu-
dents from diverse cybersecurity research backgrounds within
our lab. The study involves four sets of questions, each con-
taining 20 questions. Each question presents a unique product
name (e.g., Cellinx IP camera) and requires participants to
select the most relevant CPEs corresponding to that product.
In addition, we assume that the product name consists of
a vendor (e.g., Cellinx), name (e.g., IP camera), and any
additional information such as version, update, edition, etc.
Moreover, each question presents five CPE options and a
None of them choice, indicating that none of the given CPEs
might match the product name. We manually establish ground
truth by individually verifying and cross-referencing each CPE
option against online sources to ensure its alignment with the
represented product. In addition, before completing the tasks,
participants receive brief instruction on CPE functionality and

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 16

Fig. 15: Average time and accuracy achieved by the partic-
ipants across four attempts in mapping the CPEs to product
names while the tasks are varied among those attempts

structure due to their limited prior knowledge in this domain.
Note that all questions vary from each other by the unique
product name, and accordingly, the CPE options that are
provided by the NLP approach are different from question
to question.

Figure 15 illustrates the results of this usability study. For
each question in a set, we measure the correctness of the
answer and the time spent, from the moment the participant
saw the question for the first time to the switching to the
next question. The green line depicts the first attempt, where
participants encountered unfamiliar questions. Mistakes were
made in half of the questions, and completion times ranged
between 25 to 50 seconds per question. The purple line reflects
the second attempt, indicating reduced completion times (15-
30 seconds) as participants became more acquainted with the
question patterns. However, the average accuracy remained
at 10 out of 20 questions with errors. After the second
attempt, we trained participants to identify relevant CPEs
correctly and pointed out details to pay attention to. Following
training on CPE identification, the blue graphs represent the
third attempt, showing substantial accuracy improvement with
errors in only two questions. Participants also became more
efficient, spending 10 to 20 seconds per question. Finally,
in the fourth set of questions, we used the product names
from previous threshold experiments and correct CPE options
were highlighted based on a threshold of 0.016. Additionally,
participants were advised about the limitations of threshold
results, emphasizing that they should rely on them only to a
certain extent. Thus, the orange graphs show that accuracy re-
mained consistent with the third attempt, and completion time
decreased to around 10 seconds. As a result, participants noted
that the highlighted options aided them in identifying correct
answers efficiently. Further, students rated the task complexity
at an average of 2 on a 1 to 5 scale. Totally the accuracy
in completing such tasks is expected to be higher, but we
are showing extreme cases where participants are not familiar
with the topic. Overall, iterative training significantly improved
accuracy and reduced effort, demonstrating the feasibility of
mapping CPEs to product names for security professionals.

Threat A

{"id": "indicator-5",
 "name": "Device Event Indicator",
“device": "Smart Camera",
“value": “off",
“timestamp": "2022-09-29T00:55:54.084Z",
 ...}

{...,
"name": “App Subscribtion Indicator",
“product_name": "blink for home", ...}

{..., "name": "Device Event Indicator",
“device": "Smart Camera",
“value": “off",
“timestamp": "2022-09-29T00:55:54.084Z", ...}

"cpe:2.3:a:blinkforhome:sync_module:
2.10.4::*:*:*:*:*"

"CVE-2018-20161"

Delay 15 mins between receiving
an event and sending a command

...

Known threats and relevant response
procedures

Response Procedures A

Io
T-

sp
ec

ifi
c

in
di

ca
to

rs

Tr
ad

iti
on

al
 in

di
ca

to
rs

Output of our tool in STIX format for incident:
 backyard smart camera was turned off

{"id": "indicator-3",
"name": “App Subscribtion Indicator",
"subscribed value": "vacation"
“product_name": "blink for home"
“timestamp": "2022-09-29T00:40:54.284Z",
 ...}

{"id": "indicator-4",
"name": “App
Command
Indicator", ...}

...

match

match

match

match

match

1) manually turn on the cameras
2) stop using the malicious app "Blink for Home"

{"id":"cpe:2.3:a:blinkforhome:
sync_module:*2.10.4:*:*:*:*:*:*",}

{"id": "vulnerability-1",
 "name": "CVE-2018-20161",
 "description": "...allows attackers
to disable cameras...", ...}

Delay 15
mins

Fig. 16: Incident response for known threats

VI. CASE STUDIES

Our proposed solution might be useful for various con-
texts, including vulnerability assessment, incident response
and mitigation, security risk management, etc. To illustrate
its practicality, we present two case studies involving distinct
smart home scenarios and their corresponding incidents.
Case Study 1. In this scenario, the smart home was robbed
while the homeowners were on vacation. During the video
check from camera footage, security experts discovered that
the backyard smart camera had been switched off. Conse-
quently, they reported the incident about the camera’s un-
expected power-off state to our tool. Our solution generated
output in the STIX format, a snippet of which is shown in
Figure 16. This output includes IoT-specific IOCs detailing the
smart home’s behavior and traditional IOCs that outline known
vulnerabilities, weaknesses and attack patterns of the IoT
products. According to information provided by our solution,
the homeowners had set the house to vacation mode after
leaving. Notably, the “blink for home” smart app received
this event and maliciously powered down the smart camera
precisely 15 minutes after the users left. Our solution also
pinpointed a vulnerability in this smart app, identified as CVE-
2018-20161.

Given the wealth of threat intelligence platforms and feeds
containing previously observed threat information and re-
sponse procedures, it is prudent to check if a similar scenario
has already been documented. Our solution facilitates this
process by providing output in STIX, the most used threat
intelligence feed format. In this particular case study, such
suspicious smart home behavior has been observed repeatedly
as a Threat A in the figure. Specifically, the malicious com-
mand to turn off the camera always occurs 15 minutes after
switching the home to vacation mode. Furthermore, the app
“blink for home” responsible for this command is identified as
misconfigured because of the exploited vulnerability. Thus, if
all the indicators extracted by our tool match the documented
indicators about threat A, we assume that this is a known
attack. It is important to note that organizations have the
flexibility to establish their own criteria for matching the STIX
output of our tool with previously observed attack data. For
instance, they may employ a similarity score with a specific

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 17

CVE-2019-12944
Description:
Glue Smart Lock 2.7.8
devices do not properly
block guest access in
certain situations where
the network connection
is unavailable.
Base Score: 7.5
High, ...

Output of our tool in STIX format for incident: smart lock pincode was changed

No match found
Output of our tool in a graph format for incident: smart

lock pincode was changed

Analysis

User command IoC
Command: setPinCode 4356

Device: Smart Lock
TimeStamp: 2023-09-29T00:40:53.884Z

Device event IoC
Device: Smart Lock

Value: 4356
Product Name: Glue smart lock

TimeStamp: 2022-09-29T00:40:54.084Z

App subscribtion IoC
App: Smart app

Subscription. Value: 4356
Product Name: "Eaton halo home"

TimeStamp: 2022-09-29T00:40:54.284Z

App command IoC
Command: setPinCode 2222

Device: Smart Lock
Product Name: "Eaton halo home"

TimeStamp: 2022-09-29T00:40:54.484Z

Device event IoC
Device: Smart Lock

Value: 2222
Product Name: Glue smart lock

TimeStamp: 2022-09-29T00:40:54.884Z

Glue smart lock

cpe:2.3:h:gluehome:
glue_smart_lock:

-:*:*:*:*:*:*:*

CVE-2019-12944

1. Stop using the malicious app
2. Firmware/Software Update, (firmware

2.7.8 to the newer version, Glue smart
lock)

3. Configuration Review = block-guest
access for smart lock

Possible patches, mitigation
recomendations, updates

The smart lock's PinCode can
be changed only if the old

PinCode is correctly confirmed

a. Smart app Eaton halo home is
 malicious as it unexpectedly
 changed the PinCode value
b. By exploiting vulnerability of
 Glue smart lock attackers
 learned the old PinCode value

a

b

Conclusions

{CVE-2018-20161, ...}

{cpe:2.3:h:gluehome:glue_smart_lock:-
:*:*:*:*:*:*:*}

...

Threat evidences

Threat B
... Response Procedures B...

Threat A Response Procedures A

Known threats and relevant response procedures

New Threat New Response
Procedures

Security
expert

3

1

2

4

5.1 5.2

{..., "name": "Device Event Indicator",
"value": "2222",
"product_name": Glue smart lock, ...}

Fig. 17: Vulnerability assessment for unknown threats

threshold to determine which threats are considered matches.
Considering Threat A, it has associated Response Procedures
A, icluding 1) manually turn on the cameras, 2) stop using
the misconfigured app “blink for home” they serve as a
fixing option. Thus, these response procedures are sent to the
homeowner as soon as the threat match is found to assist
with getting the smart environment back into the secured state.
Thus, this scenario exemplifies the real-world application of
our solution in the context of incident response and mitigation.

Case Study 2. In the second scenario, a smart home user sets
a PIN for the smart lock to “4356”. However, s/he encounters
an issue when attempting to access the house because the
smart lock device gives an error due to the incorrect PIN.
Such an incident prevents the owner from accessing the
house and gives the potential access to the attackers. The
initial suspicion is that the PIN may have been maliciously
altered. Consequently, a security expert reports the incident
of the PIN being changed to an unexpected value to our
tool. Similar to the previous scenario, our tool generates an
output in STIX format, providing information on relevant
smart home events tied to the incident, along with potentially
involved device/app vulnerabilities. Subsequently, a check is
conducted to determine whether a similar attack scenario has
been documented in the available threat intelligence platform-
s/feeds. In this use case, no matching threat records are found,
indicating the possibility of a new threat that requires manual
investigation by the security expert. Our tool offers a visual
graph representation of the IoT-specific and traditional IOCs
related to the incident to support the security professional.
Figure 17 illustrates the graph, showing that after the user
initially sets the PIN to “4356”, the smart app subscribed to
this event subsequently sends a “setPinCode” command with a
value of “2222”. Note that the security expert is aware that to
define a new PIN, the attackers must correctly insert the value
of the old one. Thus, analyzing the part of the graph with the
traditional indicators, the specialist learns that the Glue smart
lock device is vulnerable through guest access, indicated by
the grey oval.

In the outcome of the graph inspection, the security pro-
fessional concludes that (a): smart app Eaton Halo Home
is misconfigured as it unexpectedly changed the PinCode
value and (b): the attackers learned the old PinCode value
by exploiting the vulnerability of the Glue smart lock device.
Using this detailed knowledge about the attack, the security
expert can now define the crucial evidence that identifies the
presence of the attack and add it to the observed threats
database. Likewise, s/he produces and publishes possible
patches, mitigation recommendations or updates as response
procedures for this attack. Consequently, the second scenario
underscores our solution’s practicality in the Vulnerability
Assessment context. Overall, by introducing these use cases,
we illustrate the applicability of our solution across various
contexts. Moreover, we underscore the value of graphical rep-
resentations and machine-readable formats as essential outputs
for further dealing with security threats in IoT environments.

VII. DISCUSSION AND LIMITATIONS

This section discusses some of IoTINTs’ considerations and
limitations.

Applicability of IoTINT to Other IoT ecosystems. IoTINT
needs some adaptation to work in practice with other IoT
platforms, such as openHAB, Home Assistant, and AWS IoT
Core. IoTINT operates on the uniform database of potential
attack-related evidence using the mapping rules to identify
connectivity between IOCs. Furthermore, IoTINT utilizes pre-
defined device and app filters to transform raw logs into poten-
tial IOCs. Thus, IOC mapping rules and predefined filters are
specific to each platform and require manual analysis based on
corresponding documentation and log formats. Nevertheless,
this is a one-time task, and afterwards, IoTINT will produce
IoT-specific threat intelligence like the current SmartThings
prototype.

Integration of Traditional and IoT-specific IOCs. Combin-
ing IoT-specific and traditional IOCs allows to provide the
smart environment behavior related to the incident along with

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 18

TABLE VII: Comparing existing solutions with IoTINT. The symbols (•), (◦) and (-) mean supported, not supported and not
applicable, respectively.

Proposals Approach
Threat Scope IOC Coverage Sources of TI

Malformed
IoT Devices

Malformed
Smart Apps Atomic Computed Behavioral Network

Traffic
Smart Device/App

Interactions OS

Shaikh et al. [25] Telescope • ◦ • • ◦ • ◦ ◦
eX-IoT [10] Telescope • ◦ • ◦ ◦ • ◦ ◦

Khoury et al. [26]
HoneyComb [27] Telescope • ◦ • • ◦ • ◦ ◦

MUDscope [11] Telescope + MUD profiles • ◦ ◦ ◦ • • ◦ ◦
Koloveas et al. [12] ML/DL - - ◦ ◦ • • ◦ ◦

All-Hawawareh et al. [13]
DLTIF [28] ML/DL • • ◦ ◦ • • ◦ ◦

ATLAS [29]
Tambe et all. [14] Honeypot • ◦ • • ◦ • ◦ ◦

Tabari et all. [30] Honeypot • ◦ • ◦ ◦ • ◦ ◦
Honware [61] Honeypot • ◦ • ◦ • • ◦ •

IoTINT Custom provenance-based • • • • • ◦ • ◦

the knowledge about devices/apps vulnerabilities participating
in it. Such a combination gives critical information to security
analysts. When IoT-specific IOCs indicate malicious activity,
but traditional IOCs reveal no vulnerabilities, it suggests the
potential presence of a zero-day vulnerability. Conversely, if
no malicious behavior is evident in IoT-specific IOCs but
vulnerabilities exist in devices or apps, it prompts security
analysts to consider device or app updates or implement
additional protective measures. Furthermore, the coexistence
of both malicious activity and vulnerabilities in collected IOCs
indicates that attacks could have been achieved by exploiting
vulnerabilities. In summary, by combining IoT-specific and
traditional IOCs, threat intelligence reports become more com-
prehensive and insightful, providing a deeper understanding
and aiding in effective decision-making. However, the gathered
IoT-specific and traditional IOCs information is not leveraged
for any further intelligence generation. We consider it as a
limitation and plan to address it in future work. In addition, as
of now, IoTINT gathers traditional IOCs, such as CPEs, CVEs,
CWEs, and CAPECs. This list can potentially be extended
to TTPs as future work to provide more information for the
security experts.
Limitations of IoTINT. Further, we discuss some limitations
of the proposed solution. First, IoTINT needs some adap-
tation while applying it to another IoT platform. Second,
IoTINT exclusively addresses attacks arising from device-
app communication, overlooking network-related threats like
scanning, flooding, DDoS, and botnet activities. Third, this
paper mainly focuses on a rule-based approach to retrieve
and connect incident-related IoT-specific IOCs. As shown in
Table V, the rule-based approach is needed, and only an
ML-based approach might not be sufficient. At the same
time, we acknowledge that an additional ML-based approach
might complement the current version of IoTINT in terms of
automation and coverage; which will be explored in the future.

VIII. RELATED WORK

This section reviews both IoT-specific and traditional threat
intelligence generation solutions and compares them with ours.
IoT-specific Solutions. Most existing works focus on collect-
ing IoT-related attack artifacts and threat intelligence on a large

scale. For instance, Pour et al. [10] and Shaikh et al. [25]
leverage internet-scale network telescope data to capture traffic
from compromised IoT devices engaged in malicious activi-
ties. Furthermore, the authors extract threat intelligence about
malformed devices such as geolocation, associated domain
names, organizational affiliations, and hosting environments,
together with unique attack patterns and traffic captured from
compromised devices. On the other hand, Khoury et al.
[26] propose an innovative solution that combines telescope
and honeypot methodologies to collect a diverse range of
malware artifacts from IoT devices. These artifacts encompass
system commands, evidence of file-less attacks, URLs housing
payloads, executable and linkable format (ELF) binaries, and
harvested login credentials. Works that implement honeypot
systems [14], [27], [29], [61] focus on the analysis of commu-
nication exchanges between the honeypots and compromised
IoT devices. This approach enables identifying and retrieving
significant malware artifacts, such as unique attack vectors,
command and control (C&C) methods, issued commands,
login attempts, and downloading malware binaries utilized by
compromised IoT devices. Meanwhile, Koloveas et al. [12]
employ machine learning techniques to systematically gather
IoT-centric Cyber Threat Intelligence (CTI) from various web
domains, including the clear, social, and dark web. Similarly,
Al-Hawawrch et al. [13] and Kumar et al. [28] leverage deep
learning algorithms to extract IoT threat patterns and their
types, ranging from backdoors, Distributed Denial-of-Service
(DDoS) attacks, ransomware, scanning activities, injection at-
tempts, etc. Moreover, MUDscope [11] introduces an approach
tailored to monitoring malicious network activities impacting
IoT systems within real-world consumer settings. This work
identifies attack signatures associated with different devices
and derives insights into emerging attack patterns by analyzing
these signatures.

Traditional Solutions. In contrast, CTI is the traditional
solution for collecting, processing and analyzing information
about threat actors’ motives, targets, and attack behaviors,
which is not specializing in IoT. Many studies delve into CTI
mining, targeting diverse threat information types with specific
objectives. Some research focuses on cybersecurity-related
entities and events sourced from hacker forums, Twitter, or

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 19

cybersecurity articles, encapsulating impacted organizations,
locations, vulnerabilities, and attack categories like phishing,
DDoS, and hijacking [62]–[67]. Others leverage machine
learning to extract tactics, techniques, and procedures (TTPs)
and hacker profiles from forums and CTI reports [68]–[74].
Many studies involve extracting Indicators of Compromise
(IOCs), such as IPs, signatures, hashes, or malware evidence,
aiming to detect malicious or potentially harmful activities
[21]–[23], [75]. Some of these studies delve further, employing
Natural Language Processing (NLP) to establish relationships
between extracted IOCs. Another category of works concen-
trates on discovering product/service vulnerabilities, predicting
exploits, and unearthing malware details [76]–[79]. Further
studies emphasize CTI for threat hunting, aiding in identifying
unknown or ongoing threats within organizational networks
[80]–[83]. These investigations source CTI data from various
outlets like hacker forums, the dark web, CTI reports, audit
logs, and intrusion alerts. Despite the efficacy of CTI in
traditional cybersecurity, its application to IoT environments
still remains limited.

Comparison between Related Works. Table VII summarizes
the comparison between existing works and IoTINT. The first
and second columns enlist existing works and methodologies
employed to harvest IoT threat intelligence. The next two
columns compare these works according to the threat scope.
The scope of malformed IoT devices is checked when a
solution collects threat intelligence artifacts about malware-
infected IoT devices. When a solution gathers threat evidence
about malicious smart apps, we check the scope of malformed
smart apps. In addition, we use a dash symbol on the threat
scope if the work is not applicable to that category. The
next three columns compare the presented works according
to the IOC coverage. Depending on the types of IOCs present
in the extracted threat information (e.g., atomic, computed,
behavioral), we mark those types in the table. In the last
three columns of the table, we compare the works based on
the sources of threat intelligence (sources of TI). Specifically,
the presented works extract attack-related artifacts from such
sources as network traffic, smart device/app interactions or OS.

In summary, IoTINT mainly differs from the state-of-the-
art works as follows. Firstly, it stands out as one of the
few approaches that gather threat intelligence about both
malformed IoT devices and smart apps, along with two other
works that used deep learning methods. Secondly, IoTINT is
the only solution that incorporates all three classes of IOCs
within the produced threat intelligence. Finally, unlike alter-
native solutions, IoTINT is the only solution to extract threat-
related information from the device-app interactions inside the
smart environment; which provides a new perspective to this
literature. Thus, we consider IoTINT complementary to the
other state-of-the-art solutions (that gather threat intelligence
from the outbound to the smart environment network traffic).
However, IoTINT still has some limitations. It needs one-
time adaptation effort when applied to other IoT platforms
(as discussed in Section VII). IoTINT mainly addresses at-
tacks arising from device-app communication, and relying on
existing works for the network-related threats like scanning,

flooding, DDoS, and botnet activities.

IX. CONCLUSION

In this paper, we proposed IoTINT, a practical frame-
work designed to obtain IoT-specific threat intelligence about
threats arising from device-app interactions within a smart
environment. It iteratively extracted IoT-specific IOCs and
their chronological connectivity before and after the security
incident. Furthermore, it combined traditional IOCs with IoT-
specific to provide enhanced insights into threats. We designed
a prototype of IoTINT for the Samsung SmartThings platform
and evaluated its performance on 10 realistic IoT attack sce-
narios and typical smart environment behaviors. The findings
demonstrate that IoTINT provides comprehensive coverage in
extracting IoT threat intelligence with minimal overhead. In
the future, we aim at covering more IoT applications with
cross-platform support in addition to considering wider range
of threat intelligence based on upcoming security threats.

Acknowledgement. The authors thank the anonymous re-
viewers for their valuable comments. This material is based
upon work supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and Department of
National Defence Canada (DND) under the Discovery Grants
RGPIN-2021-04106 and DGDND-2021-04106.

REFERENCES

[1] (2023) Iotdevicestrend. [Online]. Available: https://www.statista.com/s
tatistics/1183457/iot-connected-devices-worldwide/

[2] (2023) attacksstatistics. [Online]. Available: https://www.statista.com/s
tatistics/1377569/worldwide-annual-internet-of-things-attacks/

[3] (2024) attacksstatistics. [Online]. Available: https://www.veridify.com/7
7-percent-increase-in-malware-attacks-for-iot-connected-devices-in-1
h22/

[4] (2023) Smartthings. [Online]. Available: https://www.smartthings.com/
[5] (2023) AWS IoT. [Online]. Available: https://aws.amazon.com/iot/
[6] (2023) Google IoT core. [Online]. Available: https://cloud.google.com/i

ot-core/
[7] (2023) openhab – an open-source platform for empowering home

automation. [Online]. Available: https://www.openhab.org/
[8] J. Sengupta, S. Ruj, and S. D. Bit, “A comprehensive survey on attacks,

security issues and blockchain solutions for IoT and IIoT,” Journal of
Network and Computer Applications, vol. 149, p. 102481, 2020.

[9] P. Kumar, R. Kumar, G. P. Gupta, R. Tripathi, and G. Srivastava, “P2TIF:
A blockchain and deep learning framework for privacy-preserved threat
intelligence in industrial IoT,” IEEE transactions on industrial informat-
ics, vol. 18, no. 9, pp. 6358–6367, 2022.

[10] M. S. Pour, D. Watson, and E. Bou-Harb, “Sanitizing the IoT cyber
security posture: An operational cti feed backed up by internet mea-
surements,” in 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2021, pp. 497–
506.

[11] L. Morgese Zangrandi, T. Van Ede, T. Booij, S. Sciancalepore, L. Allodi,
and A. Continella, “Stepping out of the MUD: Contextual threat infor-
mation for iot devices with manufacturer-provided behavior profiles,”
in Proceedings of the 38th Annual Computer Security Applications
Conference, 2022, pp. 467–480.

[12] P. Koloveas, T. Chantzios, C. Tryfonopoulos, and S. Skiadopoulos, “A
crawler architecture for harvesting the clear, social, and dark web for
IoT-related cyber-threat intelligence,” in 2019 IEEE World Congress on
Services (SERVICES), vol. 2642. IEEE, 2019, pp. 3–8.

[13] M. Al-Hawawreh, N. Moustafa, S. Garg, and M. S. Hossain, “Deep
learning-enabled threat intelligence scheme in the internet of things
networks,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 4, pp. 2968–2981, 2020.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1377569/worldwide-annual-internet-of-things-attacks/
https://www.statista.com/statistics/1377569/worldwide-annual-internet-of-things-attacks/
https://www.veridify.com/77-percent-increase-in-malware-attacks-for-iot-connected-devices-in-1h22/
https://www.veridify.com/77-percent-increase-in-malware-attacks-for-iot-connected-devices-in-1h22/
https://www.veridify.com/77-percent-increase-in-malware-attacks-for-iot-connected-devices-in-1h22/
https://www.smartthings.com/
https://aws.amazon.com/iot/
https://cloud.google.com/iot-core/
https://cloud.google.com/iot-core/
https://www.openhab.org/

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 20

[14] A. Tambe, Y. L. Aung, R. Sridharan, M. Ochoa, N. O. Tippenhauer,
A. Shabtai, and Y. Elovici, “Detection of threats to IoT devices using
scalable VPN-forwarded honeypots,” in Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, 2019, pp.
85–96.

[15] M. O. Ozmen, X. Li, A. Chu, Z. B. Celik, B. Hoxha, and X. Zhang,
“Discovering IoT physical channel vulnerabilities,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 2415–2428.

[16] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. Unviersity, “ContexIoT: Towards providing
contextual integrity to appified IoT platforms.” in ndss, vol. 2, no. 2.
San Diego, 2017, pp. 2–2.

[17] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” in Network and Distributed Systems Symposium,
2018.

[18] D. Kim and H. K. Kim, “Automated dataset generation system for
collaborative research of cyber threat analysis,” Security and commu-
nication networks, vol. 2019, pp. 1–10, 2019.

[19] J. Zhao, Q. Yan, J. Li, M. Shao, Z. He, and B. Li, “TIMiner: Auto-
matically extracting and analyzing categorized cyber threat intelligence
from social data,” Computers & Security, vol. 95, p. 101867, 2020.

[20] H. Jo, Y. Lee, and S. Shin, “Vulcan: Automatic extraction and analysis of
cyber threat intelligence from unstructured text,” Computers & Security,
vol. 120, p. 102763, 2022.

[21] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the
IOC game: Toward automatic discovery and analysis of open-source
cyber threat intelligence,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016, pp. 755–
766.

[22] J. Liu, J. Yan, J. Jiang, Y. He, X. Wang, Z. Jiang, P. Yang, and N. Li,
“TriCTI: an actionable cyber threat intelligence discovery system via
trigger-enhanced neural network,” Cybersecurity, vol. 5, no. 1, p. 8,
2022.

[23] Z. Li, J. Zeng, Y. Chen, and Z. Liang, “AttacKG: Constructing technique
knowledge graph from cyber threat intelligence reports,” in European
Symposium on Research in Computer Security. Springer, 2022, pp.
589–609.

[24] (2024) Smertthings app hosting. [Online]. Available: https://developer.
smartthings.com/docs/connected-services/hosting/choose-a-solution

[25] F. Shaikh, E. Bou-Harb, N. Neshenko, A. P. Wright, and N. Ghani, “In-
ternet of malicious things: Correlating active and passive measurements
for inferring and characterizing internet-scale unsolicited IoT devices,”
IEEE Communications Magazine, vol. 56, no. 9, pp. 170–177, 2018.

[26] J. Khoury, M. Safaei Pour, and E. Bou-Harb, “A near real-time scheme
for collecting and analyzing IoT malware artifacts at scale,” in Proceed-
ings of the 17th International Conference on Availability, Reliability and
Security, 2022, pp. 1–11.

[27] M. S. Pour, J. Khoury, and E. Bou-Harb, “HoneyComb: A darknet-
centric proactive deception technique for curating IoT malware forensic
artifacts,” in NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2022, pp. 1–9.

[28] P. Kumar, G. P. Gupta, R. Tripathi, S. Garg, and M. M. Hassan, “DLTIF:
Deep learning-driven cyber threat intelligence modeling and identifica-
tion framework in IoT-enabled maritime transportation systems,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[29] Y. L. Aung, M. Ochoa, and J. Zhou, “ATLAS: A practical attack
detection and live malware analysis system for IoT threat intelligence,”
in International Conference on Information Security. Springer, 2022,
pp. 319–338.

[30] A. Z. Tabari, G. Liu, X. Ou, and A. Singhal, “Revealing human attacker
behaviors using an adaptive internet of things honeypot ecosystem,” in
IFIP International Conference on Digital Forensics. Springer, 2023,
pp. 73–90.

[31] (2023) Cve: National vulnerability database. [Online]. Available:
https://nvd.nist.gov/vuln

[32] (2023) Cwe: Common weaknesses enumeration. [Online]. Available:
https://cwe.mitre.org/

[33] (2023) Capec: Common attack pattern enumeration and classification.
[Online]. Available: https://capec.mitre.org/

[34] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in 2016 IEEE symposium on security and
privacy (SP). IEEE, 2016, pp. 636–654.

[35] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things de-
vices,” in Proceedings of the 11th ACM on Asia conference on computer
and communications security, 2016, pp. 461–472.

[36] A. K. Sikder, H. Aksu, and A. S. Uluagac, “{6thSense}: A context-
aware sensor-based attack detector for smart devices,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 397–414.

[37] B. Yuan, Y. Wu, M. Yang, L. Xing, X. Wang, D. Zou, and H. Jin,
“Smartpatch: Verifying the authenticity of the trigger-event in the IoT
platform,” IEEE Transactions on Dependable and Secure Computing,
2022.

[38] 2023. [Online]. Available: https://github.com/SmartThingsCommunity/
SmartThingsPublic

[39] (2023) IoC definition. [Online]. Available: https://www.crowdstrike.co
m/cybersecurity-101/indicators-of-compromise/

[40] A. Villalón-Huerta, I. Ripoll-Ripoll, and H. Marco-Gisbert, “Key re-
quirements for the detection and sharing of behavioral indicators of
compromise,” Electronics, vol. 11, no. 3, p. 416, 2022.

[41] (2024) Mittreattack. [Online]. Available: https://attack.mitre.org/
[42] (2023) Platfrom architecture. [Online]. Available: https://developer.sm

artthings.com/docs/getting-started/architecture-of-smartthings
[43] E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen, and B. Stiller,

“Landscape of iot security,” Computer Science Review, vol. 44, p.
100467, 2022.

[44] (2024) CPE dictionary. [Online]. Available: https://nvd.nist.gov/produ
cts/cpe#:∼:text=CPE%20is%20a%20structured%20naming,and%20test
s%20to%20a%20name.

[45] (2024) jina-embeddings-v2-base-en pre-trained model. [Online].
Available: https://huggingface.co/jinaai/jina-embeddings-v2-base-en

[46] A. Iacovazzi, H. Wang, I. Butun, and S. Raza, “Towards cyber threat
intelligence for the IoT,” in 2023 19th International Conference on
Distributed Computing in Smart Systems and the Internet of Things
(DCOSS-IoT). IEEE, 2023, pp. 483–490.

[47] (2022) Smartthings developers. [Online]. Available: https://developer.
smartthings.com/docs/getting-started/welcome/

[48] (2022) Fiddler classic. [Online]. Available: https://www.telerik.com/fid
dler/fiddler-classic

[49] (2022) Smartthings groovy ide. [Online]. Available: https://graph.api.
smartthings.com/

[50] (2023) CPE API NVD. [Online]. Available: https://nvd.nist.gov/devel
opers/products

[51] (2023) CVE API NVD. [Online]. Available: https://nvd.nist.gov/devel
opers/vulnerabilities

[52] (2023) Jina pre-trained transformer model documentation. [Online].
Available: https://huggingface.co/jinaai/jina-embeddings-v2-base-en

[53] (2023) FAISS library documentation. [Online]. Available: https:
//faiss.ai/index.html

[54] (2024) anytree python library. [Online]. Available: https://anytree.read
thedocs.io/en/latest/

[55] (2024) Graphviz Python library. [Online]. Available: https://pypi.org/p
roject/graphviz/

[56] (2024) Node.js library. [Online]. Available: https://nodejs.org/docs/late
st-v12.x/api/

[57] (2024) Faiss library. [Online]. Available: https://github.com/facebookr
esearch/faiss

[58] L. Babun, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “Real-
time analysis of privacy-(un) aware IoT applications,” arXiv preprint
arXiv:1911.10461, 2019.

[59] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic enforce-
ment of security and safety policy in commodity IoT.” in NDSS, 2019.

[60] E. Hemberg, J. Kelly, M. Shlapentokh-Rothman, B. Reinstadler, K. Xu,
N. Rutar, and U.-M. O’Reilly, “Linking threat tactics, techniques, and
patterns with defensive weaknesses, vulnerabilities and affected platform
configurations for cyber hunting,” arXiv preprint arXiv:2010.00533,
2020.

[61] A. Vetterl and R. Clayton, “Honware: A virtual honeypot framework
for capturing cpe and IoT zero days,” in 2019 APWG symposium on
electronic crime research (eCrime). IEEE, 2019, pp. 1–13.

[62] I. Deliu, C. Leichter, and K. Franke, “Collecting cyber threat intelligence
from hacker forums via a two-stage, hybrid process using support vector
machines and latent dirichlet allocation,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp. 5008–5013.

[63] R. P. Khandpur, T. Ji, S. Jan, G. Wang, C.-T. Lu, and N. Ramakrish-
nan, “Crowdsourcing cybersecurity: Cyber attack detection using social
media,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, 2017, pp. 1049–1057.

[64] N. Dionı́sio, F. Alves, P. M. Ferreira, and A. Bessani, “Cyberthreat
detection from twitter using deep neural networks,” in 2019 international
joint conference on neural networks (IJCNN). IEEE, 2019, pp. 1–8.

https://developer.smartthings.com/docs/connected-services/hosting/choose-a-solution
https://developer.smartthings.com/docs/connected-services/hosting/choose-a-solution
https://nvd.nist.gov/vuln
https://cwe.mitre.org/
https://capec.mitre.org/
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/
https://attack.mitre.org/
https://developer.smartthings.com/docs/getting-started/architecture-of-smartthings
https://developer.smartthings.com/docs/getting-started/architecture-of-smartthings
https://nvd.nist.gov/products/cpe#:~:text=CPE%20is%20a%20structured%20naming,and%20tests%20to%20a%20name.
https://nvd.nist.gov/products/cpe#:~:text=CPE%20is%20a%20structured%20naming,and%20tests%20to%20a%20name.
https://nvd.nist.gov/products/cpe#:~:text=CPE%20is%20a%20structured%20naming,and%20tests%20to%20a%20name.
https://huggingface.co/jinaai/jina-embeddings-v2-base-en
https://developer.smartthings.com/docs/getting-started/welcome/
https://developer.smartthings.com/docs/getting-started/welcome/
https://www.telerik.com/fiddler/fiddler-classic
https://www.telerik.com/fiddler/fiddler-classic
https://graph.api.smartthings.com/
https://graph.api.smartthings.com/
https://nvd.nist.gov/developers/products
https://nvd.nist.gov/developers/products
https://nvd.nist.gov/developers/vulnerabilities
https://nvd.nist.gov/developers/vulnerabilities
https://huggingface.co/jinaai/jina-embeddings-v2-base-en
https://faiss.ai/index.html
https://faiss.ai/index.html
https://anytree.readthedocs.io/en/latest/
https://anytree.readthedocs.io/en/latest/
https://pypi.org/project/graphviz/
https://pypi.org/project/graphviz/
https://nodejs.org/docs/latest-v12.x/api/
https://nodejs.org/docs/latest-v12.x/api/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 21

[65] T. Satyapanich, F. Ferraro, and T. Finin, “Casie: Extracting cybersecurity
event information from text,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 05, 2020, pp. 8749–8757.

[66] Y. Fang, Y. Zhang, and C. Huang, “CyberEyes: cybersecurity entity
recognition model based on graph convolutional network,” The Com-
puter Journal, vol. 64, no. 8, pp. 1215–1225, 2021.

[67] H. M. D. Trong, D.-T. Le, A. P. B. Veyseh, T. Nguyn, and T. H. Nguyen,
“Introducing a new dataset for event detection in cybersecurity texts,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 5381–5390.

[68] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “Ttpdrill:
Automatic and accurate extraction of threat actions from unstructured
text of CTI sources,” in Proceedings of the 33rd annual computer
security applications conference, 2017, pp. 103–115.

[69] Y. Wu, Q. Liu, X. Liao, S. Ji, P. Wang, X. Wang, C. Wu, and Z. Li,
“Price tag: towards semi-automatically discovery tactics, techniques and
procedures of e-commerce cyber threat intelligence,” IEEE Transactions
on Dependable and Secure Computing, 2021.

[70] W. Ge and J. Wang, “SeqMask: Behavior extraction over cyber threat
intelligence via multi-instance learning,” The Computer Journal, p.
bxac172, 2022.

[71] Y. You, J. Jiang, Z. Jiang, P. Yang, B. Liu, H. Feng, X. Wang, and N. Li,
“Tim: threat context-enhanced TTP intelligence mining on unstructured
threat data,” Cybersecurity, vol. 5, no. 1, p. 3, 2022.

[72] S. Samtani, R. Chinn, H. Chen, and J. F. Nunamaker Jr, “Exploring
emerging hacker assets and key hackers for proactive cyber threat
intelligence,” Journal of Management Information Systems, vol. 34,
no. 4, pp. 1023–1053, 2017.

[73] U. Noor, Z. Anwar, T. Amjad, and K.-K. R. Choo, “A machine
learning-based fintech cyber threat attribution framework using high-
level indicators of compromise,” Future Generation Computer Systems,
vol. 96, pp. 227–242, 2019.

[74] J. Grisham, S. Samtani, M. Patton, and H. Chen, “Identifying mobile
malware and key threat actors in online hacker forums for proactive
cyber threat intelligence,” in 2017 IEEE international conference on
intelligence and security informatics (ISI). IEEE, 2017, pp. 13–18.

[75] Z. Zhu and T. Dumitras, “ChainSmith: Automatically learning the
semantics of malicious campaigns by mining threat intelligence reports,”
in 2018 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2018, pp. 458–472.

[76] A. Roy, Y. Park, and S. Pan, “Predicting malware attributes from
cybersecurity texts,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
2019, pp. 2857–2861.

[77] Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen, and W. Zou,
“Devils in the guidance: predicting logic vulnerabilities in payment
syndication services through automated documentation analysis,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 747–764.

[78] Y. Chen, Y. Yao, X. Wang, D. Xu, C. Yue, X. Liu, K. Chen, H. Tang, and
B. Liu, “Bookworm game: Automatic discovery of LTE vulnerabilities
through documentation analysis,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1197–1214.

[79] A. Piplai, S. Mittal, A. Joshi, T. Finin, J. Holt, and R. Zak, “Creating
cybersecurity knowledge graphs from malware after action reports,”
IEEE Access, vol. 8, pp. 211 691–211 703, 2020.

[80] Y. Gao, X. Li, H. Peng, B. Fang, and S. Y. Philip, “HinCTI: A
cyber threat intelligence modeling and identification system based on
heterogeneous information network,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 2, pp. 708–722, 2020.

[81] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time APT detection through correlation of suspicious
information flows,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 1137–1152.

[82] S. Samtani, H. Zhu, and H. Chen, “Proactively identifying emerging
hacker threats from the dark web: A diachronic graph embedding
framework D-GEF,” ACM Transactions on Privacy and Security (TOPS),
vol. 23, no. 4, pp. 1–33, 2020.

[83] A. Nadeem, S. Verwer, S. Moskal, and S. J. Yang, “Alert-driven attack
graph generation using S-PDFA,” IEEE Transactions on Dependable
and Secure Computing, vol. 19, no. 2, pp. 731–746, 2021.

APPENDIX A
MACHINE-READABLE OUTPUT

{
t y p e : bundle ,
i d : bundle − −12345678 −XXX,
s p e c v e r s i o n : 2 . 1 ,
o b j e c t s : [

{ t y p e : i n d i c a t o r ,
i d : i n d i c a t o r −−8 e74baaa −XXX,
c r e a t e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,
m o d i f i e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,
name : Device Event I n d i c a t o r ,
d e s c r i p t i o n : Smart Garage Door i s
opened ,
d e v i c e : Smart Garage Door ,
v a l u e : opened ,
t imes t amp : 2022 −09 −29T00 : 4 0 : 5 4 . 0 8 4 Z ,
produc t name : GetNexx NXG−100B ,
l a b e l s : [i o t , dev i ce − e v e n t] ,

} ,
{

t y p e : i n d i c a t o r ,
i d : i n d i c a t o r −−8e744bbb −XXX,
c r e a t e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,
m o d i f i e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,
name : App S u b s c r i b t i o n I n d i c a t o r ,
d e s c r i p t i o n : Smart App r e c e i v e d d e v i c e
e v e n t Garage Door i s opened ,

app : M a l i c i o u s s m a r t app ,
s u b s c r i b t i o n v a l u e : opened ,
t imes t amp : 2022 −09 −29T00 : 4 0 : 5 4 . 2 8 4 Z ,

produc t name : Home a s s i s t a n t a n d r o i d ,
l a b e l s : [i o t , app − s u b s c r i b t i o n] ,

} ,
{

t y p e : i n d i c a t o r ,
i d : i n d i c a t o r −−8 e744ccc −XXX,
c r e a t e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,
m o d i f i e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,
name : App Command I n d i c a t o r ,
d e s c r i p t i o n : Smart App s e n t t u r n o f f
command t o t h e Smart Camera ,

app : M a l i c i o u s s m a r t app ,
d e v i c e : Smart Camera ,
command : o f f ,
t imes t amp : 2022 −09 −29T00 : 4 0 : 5 4 . 4 8 4 Z ,

produc t name : Home a s s i s t a n t a n d r o i d ,
l a b e l s : [i o t , app −command] ,

} ,
{

t y p e : r e l a t i o n s h i p ,
i d : r e l a t i o n s h i p − −98765411 −XXX,
c r e a t e d : 2023 −08 −02T10 : 0 0 : 0 0 Z ,
r e l a t i o n s h i p t y p e : was rece ived by ,
s o u r c e r e f : i n d i c a t o r −−8 e74baaa −XXX,
t a r g e t r e f : i n d i c a t o r −−8e744bbb −XXX

} ,
{

t y p e : r e l a t i o n s h i p ,
i d : r e l a t i o n s h i p − −98765422 −XXX,
c r e a t e d : 2023 −08 −02T10 : 0 0 : 0 0 Z ,
r e l a t i o n s h i p t y p e : c a u s i n g ,
s o u r c e r e f : i n d i c a t o r −−8e744bbb −XXX,
t a r g e t r e f : i n d i c a t o r −−8 e744ccc −XXX

}
]

}

Listing 1: An example of IoT-specific IOCs in STIX format

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 22

APPENDIX B
MAPPING RULES

In this section, we provide the rest of the four mapping
rules (Rules 2,3,5,6) used in Step 2 of our methodology (in
Section III-C) to derive the connectivity between apps and
devices related to a security incident.
Rule 5: app subscription →app command (subsequent direc-
tion):

IOC3 = IOC4 ⇐⇒ IOC3{authToken} = IOC4{authToken} ∧
IOC3{rowNumber} < IOC4{rowNumber} ∧
IOCi ∈ IOCs

(5)

where IOC3, and IOC4 represent the app subscription
IOCs, app command IOCs, respectively, and IOCi rep-
resents a log entry from the log collection, IOCs. IOC4

illustrates a set of sent commands by the smart app after
receiving a device event. According to this rule, the IOC4

can be mapped to the IOC3 if their authToken fields are
equal and the rowNumber field value of IOC4 is more than
IOC3.
Rule 6: app command →device event (subsequent direction):

IOC4 = IOC5 ⇐⇒ IOC4{deviceId} = IOC5{deviceId} ∧
IOC4{capability} = IOC5{attribute} ∧
IOC4{command} ⊆ IOC5{value} ∧
|IOC4{timestamp} − IOC5{timestamp}| ≤ 500ms,

IOCi ∈ logs

(6)

where IOC4, and IOC5 represent the app command, and
device event IOCs, respectively, and IOCi represents a
log entry from the log collection, IOCs. Specifically, IOC5

shows the device event(s) that were published by the IoT
platform as a result of the app command. According to
this rule, the IOC5 can be mapped to the IOC4, if their
deviceId field values are identical. Simultaneously, the
IOC4 capability field should match IOC5 attribute
field and IOC4 command field should be a subset of the
IOC5 value field. In addition to the above conditions, these
IOCs’ timestamps (e.g., timestamp field) must differ by
500ms or less.
Rule 2: app command →app subscription (preceding direc-
tion):

IOC4 = IOC3 ⇐⇒ IOC4{appId} = IOC3{appId} ∧
IOC4{authToken} = IOC3{authToken} ∧
|IOC4{timestamp} − IOC3{timestamp}| ≤ 5000ms,

IOCi ∈ logs

(2)

where IOC4, and IOC3 represent the app command, app
subscription IOCs, respectively, and IOCi represents a
log entry from the log collection, IOCs. Specifically, IOC3

shows a relevant app subscription because of which the
command was sent to the platform. According to this rule,
the IOC3 can be mapped to the IOC4 if their appId and
authToken fields match and they occur within a specific
period of time (e.g., 500ms).
Rule 3: app subscription →device event (preceding direction):

IOC3 = IOC1 ⇐⇒ IOC3{order} = IOC1{order} ∧
IOC3{deviceId} = IOC1{deviceId} ∧
IOC3{capability} = IOC1{capability} ∧
IOC3{value} = IOC1{value} ∧
IOC3{timestamp} − IOC1{timestamp} ≤ 5000ms,

IOCi ∈ logs

(3)

where IOC3, and IOC1 represent the app subscription,
device event IOCs, respectively, and IOCi represents a
log entry from the log collection, IOCs. Specifically, IOC1

shows an original device event published by the IoT platform
that the app received because of its subscription. The rule
defines that IOC1 can be mapped to IOC3 if they occur within
a specific period of time (e.g., 500ms) and other attributes
mentioned in the rule are the same.

	Introduction
	Preliminaries
	Background
	Challenges in Gathering Threat Intelligence from IoT Environments
	Classes of IOCs
	Threat Model and Assumptions

	Our Solution
	Approach Overview
	Enabling Logging and Defining Mapping Rules
	Deriving Dynamic Connectivity between IoT-specific IOCs
	Combining with Traditional Threat Intelligence IOCs
	Producing Threat Intelligence Report

	Implementation
	Performance Evaluation
	Experimental Setting
	Validation with Existing Works
	Accuracy
	Performance Overhead
	Time Overhead
	Storage Overhead
	Memory Overhead

	Usability Study

	Case Studies
	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix A: Machine-readable Output
	Appendix B: Mapping Rules

