
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 1

Traditional IOCs Meet Dynamic App-Device
Interactions for IoT-specific Threat Intelligence

Sofya Smolyakova, Ehsan Khodayarseresht and Suryadipta Majumdar

Abstract—While enjoying widespread popularity, IoT faces
numerous threats using both traditional (e.g., Common Vul-
nerabilities and Exposures (CVEs) and Common Weakness
Enumerations (CWEs)) and IoT-specific (e.g., device-application
interactions) attack vectors. Therefore, gathering threat intelli-
gence for an IoT environment is equally essential if not more
(compared to many other IT environments). However, extracting
threat intelligence from an IoT deployment poses several unique
challenges. First, most IoT implementations are not logging
threat-related information and even if they are, their logging
mechanisms require significant additional effort to turn those
logs to a threat intelligence. Second, there is no clear definition
of IOCs (indicators of compromise), which are the key inputs
to threat intelligence, in the context of IoT; including how
to combine IoT-specific IOCs including that are involved with
the dynamic app-device interactions. In this paper, we propose
IoTINT, a solution to obtain IoT-specific threat intelligence while
addressing the above-mentioned challenges. Specifically, our key
ideas are to first enable logging in IoT devices and apps without
requiring any code instrumentation (in contrast to existing ap-
proaches), then iteratively finding dynamic interactions between
IoT devices and their apps that are defined by automation rules
and result in various security threats, and finally, combine both
app-device interactions with traditional IOCs (such as, CVEs
and CWEs) to build a comprehensive threat intelligence for
IoT. We implement IoTINT for Samsung SmartThings, a major
smart home platform, and evaluate its performance (e.g., 100%
coverage in extracting threat intelligence within 11 seconds for
10 realistic IoT attack scenarios).

Index Terms—IoT security, threat intelligence, indicator of
compromises.

I. INTRODUCTION

The usage of connected devices in smart environments (e.g.,
homes/offices, health facilities, factories and cities) follows
an upward trend [1], opening doors for significant security
threats and attacks in IoT, the number of which reached to
112 million in 2022 worldwide and keeps growing [2], [3].
Smart environments are typically managed by IoT platforms,
such as Samsung SmartThings [4], AWS IoT Core [5], Google
IoT Core [6], and openHAB [7]. These IoT platforms support
the interconnection of diverse IoT devices via automations
and assist in deploying customized smart applications that
implement a wide range of user requirements. Thus, security

Sofya Smolyakova, Ehsan Khodayarseresht and Suryadipta Majumdar
are with Concordia Institute of Systems Engineering (CIISE), Concordia
University, Montreal, Canada (e-mails: sofya.smolyakova@concordia.ca,
ehsan.khodayarseresht@concordia.ca, suryadipta.majumdar@concordia.ca).
Copyright (c) 2024 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

attacks in IoT can follow various attack vectors encompassing
traditional methods like vulnerability exploitation and IoT-
specific approaches such as systems events and remote com-
mands based on device-app interactions [8]. Therefore, threat
intelligence gathering is critical to keep fresh knowledge about
emerging attacks in IoT, define mitigating mechanisms and
enhance security [9].

Existing research studies that gather IoT-specific threat
intelligence (e.g., [10]–[14]) cover compromised IoT devices
only from the network perspective, missing possible threats
rooted in device-app interactions. These works extensively
collect network traffic from compromised IoT devices using
diverse methodologies such as telescopes, honeypots, machine
learning, and deep learning. Subsequently, the collected traffic
undergoes thorough analysis to extract various malware arti-
facts and attack patterns specific to these IoT devices, consti-
tuting IoT-specific threat intelligence. In addition, threat intel-
ligence is usually produced from threat-related information or
evidence, which is not always available in IoT. Other works on
IoT (e.g., [15]–[17]) focus on providing raw logs from smart
environments in an unstructured manner, and thus it is tedious
to manually identify which log entries are threat-related. Also,
traditional Cyber Threat Intelligence (CTI) studies (e.g., [18]–
[23]) also focus on the network aspect and are not fully helpful
for the IoT domain due to the limitations of IoT device’s
resources and the complexity of the smart environment.

Therefore, the IoT-specific challenges to obtain threat
intelligence is unaddressed. Specifically, smart environments
involve intricate interactions among IoT devices, applications,
platforms, and users, which the traditional CTI cannot
describe. Hence, there is no definition for Indicator of
Compromise (IOCs), which are the major inputs to CTI,
specific to the IoT context that could describe smart
environment behavior. Furthermore, obtaining IoT-specific
threat intelligence from the device-app interactions requires
uncovering the artifacts that describe the smart environment
behavior and establishing the chronological connectivity
among various pieces of attack evidence. These limitations
will be further illustrated in the following motivative example.

Motivative Example. Figure 1 shows our motivating example
with a security problem (on the top), challenges to generate
threat intelligence for smart environments using existing solu-
tions (below) and our ideas to achieve the goal (on the bottom).
Problem: In a given scenario in an organization (Org A),
there are a Smart garage door, Smart lock, Smart camera,

0000–0000/00$00.00 © 2024 IEEE

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 2

Fig. 1: Our motivating example demonstrates the necessity for
IoT-speci�c threat intelligence due to the broad spectrum of
threats in diverse IoT environments. Traditional solutions face
challenges, prompting the need for a new approach, as hinted
in our proposed ideas.

and Smart app1 among others. While exploiting a vulnera-
bility (CVE-2023-1748) in theSmart garage door and
another vulnerability (CVE-2023-41898) in the smart appli-
cation, Smart app1 , an attacker unlocks the door without
proper authorization and disables the exterior camera to remain
stealthy [16]. Due to the popularity and cost-effectiveness
of those products, other organizations (Org B and Org C)
might use the same products and potentially face similar secu-
rity and safety threats. Thus, while vulnerable IoT objects lead
to small-scale threats such as burglary and intrusion within
individual organizations, they have the potential to contribute
to elevated crime rates in smart cities and, subsequently,
impact the functionality of critical infrastructures. Therefore, it
is essential to obtain intelligence about those emerging threats
in Org A, B, C , etc.
Current Challenges:The existing IoT threat intelligence solu-
tions (e.g., [10]–[14]) focusing mainly on outbound traf�c of
the smart environment network, and hence the device and ap-
plication level threats (as depicted above) remain undetected.

In addition, the employment of traditional CTI approaches
(e.g., [18]–[23]) in the IoT domain faces a set of challenges
which hinder gathering threat information as follows.
� Challenge 1:The lack of readiness in IoT logs hinders their

utilization in extracting IoT-speci�c threat intelligence. The
implication of such a challenge is that a large volume of
unprocessed entries requires considerable time and effort to
identify incident-related records that could serve as IOCs
manually. Speci�cally, Figure 1 presents log samples of the
Garage Controller app, Smart garage door, and Smart cam-
era that comprise such �elds as timestamp, sent command,
device, status, etc., indicating the device's status or the sent
app command at a speci�c time. Thus, by observing these
logs, it is impossible to identify which entries might be
attack evidence and which device-app communications led
to the incident. Furthermore, the existing approaches are
insuf�cient to address this challenge due to the de�ciency
of suitable logging solutions. Even though certain previous
studies [15]–[17] suggest the utilization of a code instru-
mentation approach to capture the behavior of IoT devices
and applications. Recently, due to contemporary smart ap-
plications running on third-party servers, code access and
analysis have become infeasible [24].

� Challenge 2: The lack of de�nition for IOCs in the IoT
domain brings up questions such as: 1) Considering that
existing solutions rely on traditional IOCs for threat intelli-
gence generation, which of these IOCs remain pertinent and
effective for IoT threat intelligence? 2) Given the scarcity of
IOCs that characterize interactions among devices, applica-
tions, platforms, and users, what novel IoT-speci�c IOCs
need to be introduced to provide insight into the smart
environment behavior? 3) How can traditional IOCs be
combined with IoT-speci�c IOCs to provide holistic threat
intelligence for the IoT domain? The implication of such a
challenge is inaccurate detection of threats targeting IoT de-
vices and applications behavior. Furthermore, the absence of
an IOC de�nition for the IoT domain can lead to incomplete
threat intelligence reports for security experts. Consequently,
analyzing and understanding threats become challenging,
as well as the ability to de�ne effective countermeasures
and mitigation strategies. The existing approaches [25]–[30]
are insuf�cient to address this challenge mainly because
they utilize traditional IOCs, as the source of the threat
information is outbound network traf�c. However, these
works only cover artifacts collected about attacks, such as
backdoors, DDos, injection, scanning, etc., and ignore the
attacks emerging from device-app interactions in the IoT
environment.

Our Ideas:To overcome those challenges, we propose:
� Idea 1: Tackling Challenge 1, where we �rst establish

logging capabilities without relying on code instrumentation
requirements. Additionally, we iteratively derive dynamic
connectivity between devices and apps, transforming them
into incident-related IOCs. The objective is to comprehend,
for example, that the garage controller app initiated the
garage door opening incident in response to the unlocked
event, and the same app deactivated the camera as a result
of the incident.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 3

� Idea 2: To addressChallenge 2, we formulate IoT threat
intelligence. In this context, we de�ne that traditional IOCs
such as Common Vulnerabilities and Exposures (CVEs)
[31], Common Weakness Enumerations (CWEs) [32], and
Common Attack Pattern Enumeration and Classi�cation
(CAPECs) [33] offer valuable insights for threat intelligence
in the IoT domain. Additionally, we introduce novel IoT-
speci�c IOCs, encompassing elements likedevice events,
app commands, app subscriptions, etc., to describe device-
app behavior in the smart environment. Ultimately, we com-
bine IoT-speci�c and traditional IOCs to better understand
threats.
More speci�cally, this paper complements existing IoT

threat intelligence solutions as we propose a practical
platform-centric approach for obtaining IoT-speci�c threat
intelligence about threats implemented based on device-app
interactions within a smart environment. First, our work in-
troduces new, tailored, and speci�c to IoT IOCs. Second, we
design our framework, namely,IoTINT, that enables logging
in a smart environment, derives dynamic connectivity between
IoT devices and apps from the logs, combines them with tradi-
tional IOCs (e.g., CVEs, CWEs) and generates various usable
reports (e.g., machine-readable, human-readable). Third, we
demonstrate the practicality of our approach to the different
security contexts with two use cases. Finally, we evaluate
our solution through extensive experiments based on realis-
tic smart home scenarios and simulated attacks, comprising
multiple smart applications and IoT devices.
The main contributions of this work are as follows:
� As per our knowledge, we are the �rst to design a practical

framework for an IoT environment that obtains IoT-speci�c
threat intelligence for various security incidents that allows
threat intelligence extraction from IoT logs by deriving
chronological connectivity between devices and apps from
their interactions. Additionally, we combine derived IoT-
speci�c IOCs with traditional IOCs to provide more insights
into a threat.

� Our proposed approach is complementary to the existing
IoT threat intelligence works by introducing new Indicators
of Compromise (IOCs) that describe devices and apps'
behavior in a smart environment (in contrast to the network-
level IOCs from those other works).

� Using 10 different classes of real smart home attacks [16],
[34]–[37], we show the ability of our tool to generate critical
threat intelligence related to an incident in IoT, including
information about both device and app vulnerabilities. In
addition, we demonstrate the practicality of produced threat
intelligence reports in two complementary use cases: (i)
incident response for known threats and (ii) vulnerability
assessment for unknown threats.

� We evaluate our solution's effectiveness on a dataset consist-
ing of logs about smart home behavior generated using both
real and simulated IoT devices of SmartThings [38] (one
of the most popular IoT platforms) where IoTINT shows
100% coverage in generating threat intelligence for smart
homes. In addition, the ef�ciency and usability of IoTINT
are evaluated. One of the results shows that the extraction
of all IOCs relevant to the incident, whose number varies

from 3 to 403 takes less than 20 seconds and spends not
more than 110 MB of memory.

II. PRELIMINARIES

This section provides the necessary background, discusses
existing challenges in IoT, and de�nes our threat model.

A. Background

Indicators of Compromise (IOCs).The Indicator of Compro-
mise (IOC) is a speci�c artifact, evidence or piece of forensic
data that indicates that a system has faced or is potentially
facing an attack or malicious activity [39] and is a crucial
part of threat intelligence. Depending on the complexity and
the level of detail in the data presentation, there are three
types of IOCs [40]:atomic, computedand behavioral. The
atomic IOCs are individual data fragments that point to an
adversary activity and can not be broken into smaller parts;
e.g., IP addresses, domains, URLs, and email addresses. The
computedindicators are usually derived or calculated from
the data involved in an incident; e.g., hash values of known
malicious �les. Thebehavioralindicators combine atomic and
computed IOCs, offering a more comprehensive view of the
various stages involved in an attack �ow or malicious activity;
e.g., MITRE tactics, techniques and procedures (TTPs) [41].

Fig. 2: Device-app interactions in SmartThings [42].

Smart Home Architecture. IoT platforms allow users to
ef�ciently manage IoT devices, including sensors and actua-
tors, by utilizing trigger-action rules (i.e., automation). Smart-
Things [38] is one of the most widely used and ubiquitous
IoT platforms, offering support for a diverse array of hub-
based and cloud-based IoT devices. Figure 2 shows how
devices and apps interact in the SmartThings platform using
an example. In this scenario where the app should turn on the
light because of the motion detection, the following sequence
of interactions ensues. (1) The motion detector sends its
state to the platform when the motion is detected. (2) The
platform then posts amotion detectedevent. (3) Given that
the smart application has subscribed to themotion detected
event and is programmed to react upon its receipt, the platform
transmits the event, signalling the occurrence of motion to the
application. (4) After receiving the event, according to the
app logic, it sends the command about turning the lighton
to the platform. (5) Subsequently, the platform transfers this
command to the smart light device. (6) Further, when the light
is on, it sends its state to the platform. (7) Finally, thelight is
on event is posted on the platform.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 4

TABLE I: Smart environment terminologies

IOC type Type Description
Device Event State Shows the IoT device changed state.

App Command Action
Aims to change the status

of devices or locations.

App Subscription Action
Allows a smart app to subscribe

for different events.

User Command Action
Aims to change the status of

devices or locations as directed by users.

Mode Event State
Shows a state change in a location

mode (e.g., away or vacation).

B. Challenges in Gathering Threat Intelligence from IoT En-
vironments

Given that existing IoT threat intelligence and CTI solutions
obtain traditional IOCs to produce threat reports, gathering
threat intelligence within an IoT smart environment might face
the following challenges.
� IoT devices often directly communicate with cloud services

or gateways. Consequently, �rst, collecting theatomictradi-
tional network-based IOCs, such as IP addresses, domains,
URLs, etc., may be arduous or even infeasible. Second,
the computedIOCs, which are typically derived or calcu-
lated through complex algorithms like anomaly detection or
behavioral signatures, pose challenges for IoT devices due
to their lightweight nature and limited processing power,
storage, and memory. As a result, implementing complex
IOC detection mechanisms may lead to potential perfor-
mance issues or device failures. Lastly, thebehavioralIOCs,
which often present as stages of an attack �ow, cannot be
identi�ed as there are noatomicor computedIOCs available
that characterize the behavior of a smart environment. As
a result, traditional IOCs mentioned above are not solely
enough for gathering threat information about incidents in
a smart environment.

� Device-app communication procedures in the IoT environ-
ment can be explained using speci�c terminologies pre-
sented in Table I. If we can identify which device-app
interactions led to the incident and occurred subsequently,
these interactions become potential IOCs as they might
constitute evidence related to the incident. Therefore, new
IOCs representingdevice events, app commands, app sub-
scriptions, etc., are associated with IoT-speci�c threats and
offer deeper insights into security incidents. However, their
extraction is non-trivial due to the absence of a direct map-
ping between device and app behavior in platform logs, and
manual log analysis demands signi�cant concentration and
time. Consequently, retrieving IoT-speci�c IOCs relevant to
the incident and identifying their chronological connectivity
poses a signi�cant challenge.

� Furthermore, our preliminary study (as shown in Figure 3)
identi�es that most IoT security incidents involve both tradi-
tional and IoT-speci�c IOCs. Speci�cally, the graph depicts
the percentage distribution between IoT-speci�c and tradi-
tional IOCs in the generated threat intelligence for various
security incidents, with the total number of extracted IOCs
ranging from 3 to 403, as indicated on the X-axis. Overall,
IoT-speci�c IOCs contribute to approximately 50% of the

total count when threat intelligence report size exceeds
150. In contrast, reports with fewer extracted indicators
contain around 20-30% of IoT-speci�c IOCs. These statistics
underscore the substantial role of IoT-speci�c IOCs in threat
intelligence, highlighting that their exclusion may result in
missing critical threat information.
We address these challenges in Section III.

Fig. 3: Distribution between IoT-speci�c and traditional IOCs
in the obtained threat intelligence for various security incidents

Fig. 4: IoT-speci�c IOCs classi�cation.

C. Classes of IOCs

Figure 4 demonstrates an example of incident-related threat
intelligence in a graph format showcasing newly introduced
IOCs and their interconnections. Within this scenario, Smart
apps 1 and 2 subscribed and received the smoke event that
was not detected. This triggered Smart app 1 to unlock the
smart lock device. In contrast, Smart app 2 sent siren and
strobe commands to the smart alarm. Moreover, Smart app
3 received the smart alarm siren event, which resulted in the
opened window, which deviates from expected smart home
behavior.App commandIOCs highlighted with red color in
Figure 4 represent malicious activity, as in a normal scenario,
when no smoke is detected, the alarm devices should be in
the off state. Thus, we classify individual nodes that point
to an adversary activity as anatomicIOC. Speci�cally, in the
example scenario,atomicIOC 1 is an unlock command, while
atomic IOC 2 is a siren command. Furthermore,behavioral
IOCs usually combineatomicandcomputedIOCs and de�ne
an attack pattern or various stages of malicious activity. Thus,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 5

we classify atomic IOC, together with its preceding and
subsequent events as abehavioralIOC as it presents a smart
home behavior pattern including nodes before and after the
malicious activity. Figure 4 illustrates two branches outlined
with dashed lines representing thebehavioral IOCs 1 and 2.
Finally, we categorize the complete graph outlining device-
app interactions pertaining to a speci�c incident as acomputed
IOC. This IOC may encompassatomicandbehavioralIOCs,
necessitating multiple steps for its generation, as elaborated in
Section III-C of this paper.

D. Threat Model and Assumptions

In the context of smart home environments, security
breaches can occur through various means, such as taking
advantage of vulnerabilities within the IoT platform, smart
applications, or the devices themselves. This research paper
primarily relies on data recorded by the IoT platform for the
purpose of threat intelligence generation. If certain platform
logs are incomplete or not present, IoTINT is not focused to
detect them and hence it might lead to inaccurate/incomplete
threat intelligence generation. In this work, we consider, the
main threats that lead to the security incidents inside the smart
environment are as follows [43]. (i)Malformed/compromised
smart apps:Third-party apps can be installed on the IoT
platforms, which can acquire unnecessary extra privileges
during the installation time to perform undesired actions. Note
that installation of smart apps does not necessarily involve
downloading Android/iOS apps locally (e.g., accessible from
a web browser). Instead, they run on third-party servers and
can subscribe to platform events, which allows them to gain
control over connected IoT devices. (ii)Vulnerable/malformed
devices:We also include the threats from the devices with
hardware or �rmware vulnerabilities that attackers might ex-
ploit. For our experiments in this paper, due to the availability
of a particular dataset, we mainly consider the scenarios with
the malformed/vulnerable smart apps.

III. O UR SOLUTION

This section presents the IoTINT methodology.

A. Approach Overview

Figure 5 illustrates a high-level overview of the IoTINT
approach in four major steps. First, to enable logging without
code instrumentation (to overcome the limitations of existing
works, e.g., [17]) and use them for the purpose of obtaining
threat intelligence, IoTINT collects raw data from devices and
apps through the platform, categorizes device/app-speci�c logs
from raw data, and constructs the database of logs and map-
ping rules (detailed in Section III-B). Second, to identify inter-
actions between devices and apps during the reported security
incident, IoTINT initiates an iterative connectivity session that
utilizes the database of logs and the mapping rules to extract all
relevant IoT-speci�c IOCs, both preceding and subsequent to
the incident (detailed in Section III-C). Third, to provide more
comprehensive insight into understanding the incident, IoTINT
combines the IoT-related IOCs acquired in the earlier step with

the traditional IOCs, including the CVEs, CWEs, and CAPECs
related to the incident (detailed in Section III-D). Finally, to
enable various use cases, IoTINT produces threat intelligence
reports in various formats (detailed in Section III-E) and then
applies graph-based reports suitable for manual inspection for
incident response, and machine-readable reports for automated
vulnerability assessment (Section VI).

B. Enabling Logging and De�ning Mapping Rules

Enabling Logging. This step is to allow the logging of
threat-related information, such as device-app interactions and
to prepare raw data to become a future threat intelligence.
Speci�cally, as a �rst step, we enable logging to source
raw data from the IoT platform, encompassing interactions
among devices, applications, and users without using code
instrumentation. While code instrumentation could capture
smart environment activities and their correlations (e.g., smart
app activating light in response to a motion event), we target
to log just raw data of events recorded by the IoT platform and
interactions between third-party apps and the platform, as their
connectivity is established in further steps of the methodology.
In order to collect data, IoT platforms must employ monitoring
and management solutions, such as Amazon CloudWatch, to
capture and store JSON-formatted data for published device
events and the transferred data between the IoT platform and
the connected smart apps for each user's account. Within our
implementation on the SmartThings platform, we establish
a proxy channel to gather data between the SmartThings
cloud platform and the server hosting the smart apps. This
channel intercepts all network traf�c between the components
and monitors the exchanged data. Additionally, to capture
event logs from the platform, we establish a WebSocket
connection directly with the platform via the user account.
Since the raw data is unstructured and comprises various �elds,
it necessitates preparation for utilization by other modules
within IoTINT. Thus, as a second step, IoTINT classi�es raw
logs for each IoT device or smart app based on deviceIds,
appIds, eventSources and other attributes. Subsequently, we
reduce the size of stored logs by leveraging prede�ned lists of
�elds, as not all the log attributes might be needed to produce
threat intelligence. Lastly, preprocessed potential attack-related
evidences are saved in the database.

De�ning Mapping Rules. To de�ne mapping rules that are for
identifying evidence pertinent to a security incident, we adopt
a manual effort due to the variability of mapping speci�cs
across different platforms. Thus, the researchers examined log
samples from a speci�c automation scenario within a smart
home environment to de�ne the mapping rules that construe
the connectivity of app-device interactions in preceding and
subsequent directions. Note that this manual step of deriving
mapping rules only recur if IoTINT is ported to other IoT
platforms (than the SmartThings platform, for instance).
Example 1. Figure 6 illustrates the enabling logging step for
a smart home scenario, mirroring our motivating example,
in four major steps. In Step 1, as a result of data collec-
tion from Smart light , Smart garage door , Smart
camera , andSmart app1 , the IoTINT receives the device

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2024 6

Fig. 5: An approach overview of IoTINT.

and app events as raw inputs. In Step 2, leveraging key de-
tails highlighted in blue, such asevent source , device
ID , andapplication ID , IoTINT classi�es logs for cor-
responding devices and apps. In Step 3, IoTINT extracts
the deviceID , eventID , value and timestamp for
the Smart light and appID , deviceID and command
attributes for the malformedSmart app1 , as prede-
�ned by the device and app �lters to transform logs into a
form of potential IOCs. In Step 4, we show mapping rules for
a simple automation rule involvingSmart camera , Smart
light , andSmart app1 . In this scenario, when the camera
detects motion, the app receives this event and triggers a
command to activate the light. We collect the logs after the
automation is executed and manually inspect each type of log,
such asdevice eventabout motion being detected bySmart
camera , app subscriptionaboutSmart app1 receiving the
event,app commandaboutSmart app1 sending a command
to turn on theSmart light , anddevice eventaboutSmart
light being turned on, to de�ne the rules that connect these
logs chronologically. Speci�cally, for subsequent direction,
we de�ne how to map thedevice event to the app
subscription , the app subscription to an app
command, and theapp command to thedevice event .
Consequently, following the opposite chronological order, we
de�ne the mapping rules for a preceding direction that con-
nects thedevice event to the app command or user
command, theapp command to theapp subscription
and theapp subscription to thedevice event .

C. Deriving Dynamic Connectivity between IoT-speci�c IOCs

This step is to derive IoT-speci�c IOCs related to the
incident and establish their connectivity to offer insights into
the smart environment's behavior. This step addresses the
challenge of laborious manual extraction of incident-related
artifacts due to many concurrent irrelevant events that appeared
at the time of the incident as well as the dynamic nature of

those relevant connectivities that are mainly de�ned by the
automation rules. First, we receive the incident description as
input from the user or the security expert and aim to pinpoint
the log record in the database that closely aligns with the
observed scenario. Thus, the found log record becomes the �rst
IOC related to an incident and a starting point to �nd other
related IOCs. Further, IoTINT proceeds to retrieve all IoT-
speci�c IOCs connected to this input IOC in both preceding
and subsequent directions. For this step, IoTINT utilizes the
mapping rules (e.g., described below as Rules 1 and 4) and
the database of logs that are identi�ed in the previous step.
To provide further elaboration, the preceding direction aims
to identify all pertinent IOCs that occurred chronologically
before an identi�ed initial IOC. Conversely, the subsequent
direction seeks to unearth all pertinent IOCs that transpired
chronologically after the initial IOC.

Upon examining the architecture and behavior of the plat-
form, we noted a consistent sequence of IOCs appearance in
a smart environment: user command! device event! app
subscription! app command! device event! repeat. This
sequence serves as a subsequent direction for IOCs search.
Conversely, a reversed sequence of IOCs would be followed
if IoTINT is searching for IOCs in a preceding direction.
These sequences are shown in Figure 7. Speci�cally, Figure 7a
illustrates the �ow chart that IoTINT follows while conducting
a preceding direction search. In this process, the starting
IOC is a device eventprovided as input, which may result
from eitheruser commandor app commandaccording to the
observed sequence. Thus, by leveraging the initial IOC data
to populate Rule 1, IoTINT constructs and executes a query
to the database, retrieving a new IOC relevant to the incident.
Subsequently, if the new IOC was found, IoTINT analogously
uses Rule 2 to identify the relevantapp subscriptionIOC and
Rule 3 to identify thedevice eventIOC. Note that if no IOC
is found, IoTINT stops the search, indicating that no more
relevant to the incident IOCs in this direction exist. Similarly,

	Introduction
	Preliminaries
	Background
	Challenges in Gathering Threat Intelligence from IoT Environments
	Classes of IOCs
	Threat Model and Assumptions

	Our Solution
	Approach Overview
	Enabling Logging and Defining Mapping Rules
	Deriving Dynamic Connectivity between IoT-specific IOCs
	Combining with Traditional Threat Intelligence IOCs
	Producing Threat Intelligence Report

	Implementation
	Performance Evaluation
	Experimental Setting
	Validation with Existing Works
	Accuracy
	Performance Overhead
	Time Overhead
	Storage Overhead
	Memory Overhead

	Usability Study

	Case Studies
	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix A: Machine-readable Output
	Appendix B: Mapping Rules

