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Abstract—Among many other security applications, anomaly
detection is one of the biggest users of deep learning methods.
This growing popularity is mainly driven by two common beliefs:
(i) its ability to manage complicated patterns inside large datasets
(given a large amount of data) and (ii) its no need of separate
feature engineering (as it is done within the model learning).
In this study, we question both of those beliefs and revisit the
effectiveness of feature selection and data augmentation in the
performance of popular deep-learning based anomaly detection
approaches. Additionally, we study the impact of other important
factors of any learning based anomaly detection approaches
including learning models (both traditional Ml and deep learning),
data balancing techniques, hyper parameter tuning, etc. on their
performance. From this study, we first report that those common
beliefs are not always true - which necessitates a framework
that can evaluate the usefulness of features and data for specific
use cases (varying the data and need). Then, we propose a new
framework that can fill in this gap and assist the data users and
anomaly detection tools to perform better by selectively choosing
all the configurations (such as, features, models, hyper parameter,
balanced data, augmented data). Finally, we demonstrate the
effectiveness of our framework using two major IoT datasets.

Index Terms—Deep Learning, Machine Learning, Feature Se-
lection, Data Augmentation, Anomaly Detection

I. INTRODUCTION

Deep Learning (DL) techniques are overly used in anomaly
detection (e.g., [5], [38], [41], [43], [44]). This popularity is
mainly from an usual fact that they are good at finding com-
plicated patterns without requiring a separate feature selection
step. However, obtaining a large-scale training dataset, which
is believed to be always essential to get a better performing
anomaly detection model, is reported to be one of the biggest
challenges [1], [29].

Recent anomaly detection research shows varied approaches
to feature selection and data augmentation, with some studies
using deep learning without explicit feature selection [30], [41],
[44], [47], while others incorporate it [11], [14]. Our work
systematically investigates the impact of these approaches on
anomaly detection performance. Unlike most existing works
that leverage deep learning or traditional machine learning
(ML) models in anomaly detection (e.g., [11], [38], [41], [44],
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[46], [47]), in this work, we intend to study how widely these
beliefs are applicable in anomaly detection as follows.
• Is avoiding feature selection always useful?: Even though

it is obvious that avoiding the feature selection step brings
more automation and hence convenience in the anomaly
detection process, not necessarily that always helps to obtain
a better performing models.

• Is augmenting data always useful?: Even though in a suitable
case adding more data provides a better model for anomaly
detection, that might not always be the case, especially when
the augmented data plays a negative role on the model.
In this paper, we consider a security context and address

the above-mentioned two questions to provide a guideline
for existing anomaly detection tools on how to decide on
feature selection and data augmentation along with several
other critical configurations (e.g., hyperparameters, balanced
data, models) that impact their performance (both in accuracy
and efficiency). Specifically, we first examine the impact of
different combinations of feature selections, data balancing,
and other factors on various models’ performance. Next, we
select the best combinations, analyze the impact of data
augmentation on the performance of the selected models,
and suggest whether to augment the data through the use of
data complexity measurements. Then, we build a framework,
namely, AMETIS (named after Athena and Metis, the symbols
of deep and strategic decision-making), that can suggest the
best scenarios for a given dataset. Finally, using two public
IoT datasets (CICIoT2023 [32] and IoT-23 [15]), we evaluate
the effectiveness of the proposed framework in assisting the
existing anomaly detection tools.

In summary, the main contributions of this paper are:
• As per our knowledge, we are the first to study the wide

applicability of two common beliefs (i.e., big need of aug-
mented data and no need of feature engineering) on deep
learning methods for anomaly detection and show that those
beliefs are not always applicable for the performance of
existing anomaly detection approaches.

• Based on the key findings of our study, we propose a
framework that aims at assisting existing anomaly detection
approaches in choosing on features and data. The proposed
framework provides several DL/ML models along with dif-



ferent feature selection methods in a flexible manner, where
a user can simply choose any combinations to train and
test their desired models on their own dataset and examines
different accuracy metrics to decide whether a given dataset
is helpful for data augmentation.

• We evaluate our proposed framework using two large IoT
datasets (CICIoT2023 with over 100 million network flow
records and IoT-23 with approximately 20 million captured
packets), six deep/machine learning techniques (including
BERT and autoencoder), three major feature selection meth-
ods (i.e., filter, wrapper, and embedded) along with ten
different evaluation setups depicting various combinations
of techniques applied on anomaly detection to demonstrate
its effectiveness in choosing the best combination of features
and augmented data.

• The source code of our framework, along with evaluation
setups and documentation, is publicly available1.

II. BACKGROUND

Feature Selection. Feature selection enhances performance
of learning by focusing on important data and removing
unnecessary or redundant features. In the following, we provide
a brief background on major feature selection techniques.

Filter Methods [9] assess feature relevance independent of
prediction models using intrinsic data properties and statistical
relationships with the target variable, allowing quick screening
of irrelevant inputs before costly model training. Notable filter
methods include: (i) Mutual Information (MI) [2] measures
dependence between variables using entropy reduction. High
MI indicates a feature significantly reduces target variable
uncertainty, capturing nonlinear associations. (ii) Trank (T-
test Ranking) [35] ranks features using t-statistic between
class distributions. Features with significantly different class
means considered more informative. (iii) Principal Component
Analysis (PCA) [20] converts correlated variables into uncor-
related principal components, reducing dimensionality while
preserving key information. (iv) Chi-Square Test (χ2) [27]
assesses the association between categorical features and target
classes, with higher values indicating stronger dependence. (v)
SelectKBest (SKB) [13] reduces dimensionality by retaining
the top k highest scoring features. It ranks features based on
ANOVA F-values, selecting those with the highest classifica-
tion power and removing redundant and noisy features.

Wrapper Methods [22] evaluate feature subsets based on
their combined performance within a specific machine learning
model [22]. This model-dependent approach often yields supe-
rior feature selection and accuracy compared to filter methods
but at a higher computational cost [34]. Notable wrapper
methods include: (i) Random Forest (RF) [3] ranks features by
their average impurity reduction across the ensemble’s decision
trees. (ii) Particle Swarm Optimization (PSO) [21] optimizes

1https://github.com/alireza12t/AMETIS-framework

feature subsets by iteratively updating positions of particle
swarms representing candidate solutions.

Embedded Methods [6] integrate filter and wrapper ap-
proaches, efficiently selecting features during model training
while considering interactions. They find model-specific sub-
sets without exhaustive searches, promoting generalization and
stability [6], for example: (i) Lasso Regularization (L1) [39]
introduces a penalty on the absolute magnitudes of the model
coefficients. This method reduces certain coefficients to zero,
inherently integrating feature selection within model training.
(ii) Ridge Regularization (L2) [18] penalizes the square of
model coefficients, reducing their magnitude but not to zero.
It addresses multicollinearity by evenly distributing feature
importance, helping reduce overfitting.
Data Complexity. Data complexity encompasses various in-
trinsic dataset characteristics that challenge machine learning
algorithms beyond simple class distribution issues [17]. These
include factors such as class ambiguity, data sparsity, high
dimensionality, and complex decision boundaries. Various met-
rics have been developed to evaluate these aspects of data
complexity, including: (i) Entropy of Class Proportions (C1)
measures dataset imbalance through class proportion entropy.
Lower values signify balanced distributions, indicating simpler
problems [28]. (ii) Maximum Fisher’s Discriminant Ratio (F1)
measures the overlap between feature values across classes,
with higher values indicating more complexity. It computes
the ratio of inter-class to intra-class scatter for each feature
[12]. (iii) Misclassification Complexity Measure (CM) quan-
tifies complexity around instances prone to misclassification,
identifying areas for model refinement to enhance prediction
accuracy [36]. (iv) Error Rate of Linear Classifier (L2) mea-
sures the fraction of instances misclassified by a linear model
like SVM, indicating linear inseparability of the data [17].

III. RELATED WORKS

Deep Learning-based Anomaly Detection. Recent studies
propose various IoT anomaly detection solutions. CMD [47]
combines network and hardware data using NN, while Minh
et al. [30] use a CNN-based interpretable ensemble system.
Wang et al. [41] focus on certifying the robustness of deep
learning traffic analysis systems. Other works [8], [11], [14],
[19], [38], [44], [46] utilize different anomaly detection models
for threat detection on real and simulated networks; some
incorporate feature selection [11], [14], [38] and data balancing
[8], [14]. However, most studies apply DL techniques without
extensively focusing on feature selection or data augmentation,
relying on the model’s ability to learn relevant features.
Data Augmentation. Data augmentation techniques have been
used across various domains, including image classification
[29], [31], text classification [45], and intrusion detection
[42]. These approaches are predicated on the assumption that
increased data volume enhances model performance. In the
context of network security, studies like [42] have applied data



augmentation to address class imbalance and improve detection
rates in intrusion detection systems. However, these works
often do not critically examine the universal applicability of
data augmentation or explore scenarios where it might intro-
duce noise or be unnecessary. Our study extends these efforts
by investigating how data augmentation, when strategically
combined with feature selection and hyperparameter tuning,
can enhance model generalization and reduce overfitting in
cybersecurity anomaly detection, emphasizing a more nuanced
approach to data management.
Comparative Study. Table I summarizes the findings of
our comparative study on supplementary techniques across
different model configurations using real IoT network traffic
datasets, such as CICIoT2023 and IoT-23. This evaluation pro-
vides insights into the optimal combination of feature selection
and data augmentation with anomaly detection models, and
distinguishes our study from existing works that solely focus
on applying anomaly detection.

IV. METHODOLOGY
Overview. Our proposed method performs two major steps
towards enhancing the performance of anomaly detection: (i)
finding the best combinations of features and models and
(ii) evaluating the impact of data augmentation. Our primary
goal is not to compare or produce specific anomaly detection
models. Instead, we focus on examining how feature selection,
data balancing, and hyperparameter tuning affect anomaly
detection performance across various scenarios and datasets.
Our framework aims to suggest best combinations of these
elements based on dataset characteristics, providing insights
into their interactions and impact on system effectiveness.

The finding the best combinations of features and mod-
els step (elaborated in Section IV-A) aims to reevaluate the
common practice of underplaying the role of feature selection
especially in deep learning techniques for anomaly detection.
To that end, we first prepare numerous scenarios while varying
the combinations of data balancing, feature selection, hyper-
parameter tuning and machine learning models, and then
evaluate the effect of each combination on the performance
(in both efficiency and accuracy) in anomaly detection to
identify the best combination(s). The evaluating the impact
of data augmentation step (elaborated in Section IV-B) aims
to reevaluate the common practice of adding more data to
improve the performance of deep learning models for anomaly
detection. Thus, we first measure the complexity of various
augmented datasets and then conduct the correlation studies
between data complexity and their performance in anomaly
detection to identify the usefulness of each augmented dataset.

A. Best Features and Models Selection

The overview of finding the best model configurations
including features is shown in Figure 1. Specifically, our
method performs the following five main feature selection
and model configuration steps in different combinations to

evaluate their specific impacts on the model: Data Preparation
(D), Feature Selection (F), Hyperparameter Tuning (H), Data
Balancing (B), and Anomaly Detection (A). To analyze the
effects of different modules, we devise ten scenarios (S0-
S9) encompassing various sequences and combinations of
modules(always starting with data preparation), systematically
evaluating their impact on overall model performance. The
scenario, S0, includes only the anomaly detection module as
a baseline. The scenarios S1-S4 assess different integration
approaches for feature selection and class balancing, while the
scenarios S5-S9 examine the impact of hyperparameter tuning
on the previous scenarios.

1) Data Preparation: We utilize two popular IoT datasets:
(i) IoT Aposement 23 (IoT-23) and (ii) CICIoT2023. (i) IoT-
23 Dataset captures network traffic from various IoT devices
(e.g., smart locks, Amazon Echo, and Philips HUE lamps)
comprising over 760M packets and 325M labeled flows. The
dataset features 20 malware captures and three benign traffic
captures, encompassing attack types such as Mirai, Torii, and
Trojan. (ii) CICIoT2023 Dataset simulates 33 distinct attacks
on a network of 105 IoT devices, categorizing attacks into
seven types: DDoS, DoS, Recon, Web-based, Brute Force,
Spoofing, and Mirai. Both datasets undergo preprocessing to
prepare them for anomaly detection models. This prepara-
tion involves handling missing values, encoding categorical
variables into numeric representations using techniques such
as one-hot encoding, and standardizing numerical features to
a common scale. These steps ensure the datasets are clean,
properly encoded, and scaled for further analysis.

2) Feature Selection: In our study, we employ various
feature selection methods discussed in Section II. For filter
methods, we rank feature importance independently and retain
features with scores higher than the average for both ML
and DL models, effectively removing noisy and less relevant
candidates. The wrapper methods return a subset of features.
We integrate the embedded methods into our DL models.
Additionally, we propose to merge the results of several feature
selection methods, for which we focus on wrapper and filter
techniques, as embedded feature selection methods do not
provide a list of chosen features.

Our proposed combined feature selection includes: (i) All
Selected Features merges all features identified by any se-
lection method, ensuring no potentially significant feature is
overlooked. (ii) Common Features selects those features chosen
by all methods, identifying the core set of important features.
(iii) Majority Voting leverages collective decisions, selecting
features chosen by at least half of the employed methods.
(iv) Separate Wrapper and Filter Common Features combines
commonly selected features from wrapper and filter methods
into two distinct subsets. (v) Wrapper and Filter Majority
Voting applies majority voting separately to wrapper and filter
methods, then combines selected subsets. These approaches
aim to leverage the strengths of different feature selection tech-
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Hu et al. (2024) [19] Network Traffic • • •
Dong et al. (2023) [11] Network Traffic • • • •
Wang et al. (2023) [41] Network Traffic • • •
Yuan et al. (2023) [46] Network Traffic • • •
Wei et al. (2023) [44] Network Traffic • • • • •
Fu et al. (2021) [14] Network Traffic • • • • •
Tang et al. (2020) [38] Web Traffic • • • • •
Nanni et al., (2021) [31] Detect Malware • • •
Catak et al., (2021) [4] Detect Malware • • • • •
AMETIS⋆ Network Traffic • • • • • • • • • •

TABLE I: Comparison of related works for anomaly detection. Blank space shows feature absence, (•): feature presence, (-):
unavailable information, AE: Auto-Encoder, NN: Neural Network, RF: Random Forest, GB: Gradient Boosting.

Fig. 1: Different orderings of anomaly detection pipeline modules: feature selection, hyperparameter tuning, data balancing

niques while mitigating their individual biases or limitations.
3) Anomaly Detection Models: Various deep learning and

machine learning models enable robust anomaly identification.
This study uses popular models like AutoEncoder (AE) [16],
BERT [10], Isolation Forest (IF) [26], Neural Network (NN)
[16], Convolutional Neural Networks (CNN) [24], and XG-
Boost [7], each suited for specific data or anomaly detection
tasks. Feature selection techniques are applied to enhance
performance by retaining relevant inputs, potentially improving
accuracy and efficiency.

4) HyperParameter Tuning: In our study, we use a greedy
approach for hyperparameter tuning in ML and DL models.
We employ KerasTuner 2 with its Hyperband algorithm [25]
to efficiently navigate complex hyperparameter spaces and
identify optimal configurations for our models. This method
efficiently explores hyperparameter configurations by evaluat-
ing many candidates briefly with small epochs and extending
training for promising ones. It uses decision trees to optimize
selection, focusing computational resources on configurations
that improve validation metrics for anomaly detection.

5) Data Balancing: To address class imbalance in anomaly
detection datasets, we employ the Synthetic Minority Oversam-
pling Technique (SMOTE) for up-sampling minority classes.
This method generates synthetic data to enhance diversity and
improve model generalization, as recommended in imbalanced
learning for anomaly detection [43].

6) Methodology Scenarios: This section presents various
scenarios where each scenario is a combination of different

2https://github.com/keras-team/keras-tuner

steps (as shown in Figure 1) to study the impact of feature
selection and data balancing on anomaly detection performance
using ML and Dl models as follows.
a) Data Flow Baselines (Scenarios S0-S2) appraise the inherent
capabilities of the models (S0) prior to incorporating feature
selection (S1) or class balancing (S2), evaluated independently
to discern their individual contributions.
b) Feature Selection vs. Balancing Order (Scenarios S3-S4)
inspect the efficacy of applying data balancing techniques
either preceding (S3) or succeeding (S4) feature selection, to
ascertain the most effective procedural order.
c) Hyperparameter Tuning Integration (Scenarios S5-S7) in-
vestigates optimal tuning placement within the pipeline: with
only anomaly detection (S5), after feature selection (S6), or
following data balancing (S7).
d) End-to-End Integration (Scenarios S8-S9) constructs and
evaluates comprehensive pipelines integrating all components
in a sequential order, specifically, data balancing followed by
feature selection and then tuning (S8) versus feature selection
succeeded by data balancing and tuning (S9), to examine their
holistic impact.

Examining these scenarios facilitates independent and com-
parative analyses of key factors affecting anomaly detection
efficacy in IoT environments. This includes the isolated effects
of feature selection, data balancing, and hyperparameter tun-
ing, as well as their interactions and integration points. Our
study investigates how these techniques can optimize anomaly
detection systems in cybersecurity contexts. The investigation
assesses full end-to-end pipeline ordering to establish best
practices for configuring high-performance anomaly detection



systems tailored to IoT frameworks, aiming to improve both
efficacy and efficiency in identifying anomalies while maintain-
ing accurate normal data characterization. To understand the
trade-offs between computational costs and accuracy benefits,
runtime metrics are recorded and analyzed across all scenarios.
It is important to note that all model architectures and all fea-
ture selection methods are applied across all scenarios (S0-S9).
This comprehensive approach allows for a thorough evaluation
of each combination’s effectiveness in various configurations.

B. Data Augmentation

This section describes the second main part of our method,
building upon “Finding the Best Model and Scenario” com-
ponent. In this phase, we aim to identify which dataset could
improve our anomaly detection performance when combined
with our original data. We follow a step-by-step process shown
in Figure 2. First, we combine datasets and apply the best
settings from the previous experiment. Then, we calculate
the complexity of the combined data and train our chosen
ML or DL model on this data. By analyzing the relationship
between data complexity and model performance, we can make
suggestions about adding new data to our current dataset.

Fig. 2: Process flow of the data augmentation.
1) Data Preparation: We initiate this experiment by com-

bining various datasets into a singular dataset. The objective
here is to create a comprehensive pool of data that encapsulates
diverse characteristics and patterns. This combined dataset
will go through an assessment of data complexity approaches
such as Misclassification Complexity Measure (CM), Entropy
of Class Proportions (C1), Maximum Fisher’s Discriminant
Ratio (F1), and Error Rate of Linear Classifier (L2) which
is explained in Section II.Upon evaluating data complexity, we
engage in the training of the selected ML or DL model from
experiments in finding the best model and scenario.

2) Correlation between Data Complexity and Model Met-
rics: Determining the correlation between the performance
indicators of the previously described anomaly detection model
and the data complexity of the data is a crucial phase in
our process. To clarify this link, we use statistical correlation
approaches such as pearson, kendall’s tau, spearman’s rank,
and point biserial and Maximal Information Coefficient (MIC)
methods. Several model performance indicators, including g-
mean, F1-Score, F1-macro, F1-micro, recall, and precision, are
used to illustrate the correlation results.

In conclusion, our developed methodology offers a frame-
work for customizing anomaly detection systems to the partic-
ular requirements of IoT network traffic logs.

V. EVALUATION

In this section, we provide a detailed evaluation of our
proposed solution. We analyze the effects of data augmentation,
feature selection, data imbalance, and hyperparameter tuning
on different evaluation metrics.

A. Experimental Setup

Evaluation Metrics. We measure multiple metrics to provide
a comprehensive view of model effectiveness specifically for
imbalanced data as follows. Precision measures true positive
rate among predicted positives, and recall measures correctly
identified actual positives [33]. F1-Score balances precision
and recall, [40], F1-Macro averages F1-Scores across classes,
and F1-Micro combines overall performance [37]. G-Mean
assesses balance between model’s positive and negative class
performance [23].

Dataset. Our study uses IoT-23 [15] and CICIoT2023 [32]
datasets. From IoT-23, we select 8-1 (DS1), 20-1 (DS2), 3-1
(DS3), 1-1, and 42-1. From CICIoT2023, we include the small-
est (DS4) and largest (DS5) datasets. The 34-1 dataset from
IoT-23 and a CICIoT2023 subset serve as test datasets. Across
DS1-DS5, attack instances predominate (79% to 99.5%), with
DS2 having the highest benign percentage (21%).

B. Finding the Best Model and Scenario

Analyzing the impact of feature selection, data balancing and
hyperparamter tuning across different scenarios reveals some
consistent patterns in the effects on model performance. By
comparing scenarios, we observe both positive and negative
impacts of modules on models.

Feature selection methods significantly enhanced the perfor-
mance of deep learning models across various datasets. CNNs
exhibited remarkable improvements, with F1-scores increasing
from 16% to 99% using χ2 and PCA in DS1, and from 61.33%
to 98% using Random Forest (RF) in DS5. NN models also
demonstrated substantial enhancements, particularly with the
Trank method boosting F1-scores from 43% to 99.39% in DS1,
and RF improving from 1% to 99.47% in DS3. BERT models
performed consistently well across all datasets, with F1-scores
in DS1 rising from 94.81% to 98-99% using various methods.
Autoencoder (AE) models, while already performing well in
DS1, DS2, and DS3, showed improvements with PCA and
Mutual Information (MI) in DS4 and DS5.

In summary, our findings underscore the importance of
tailoring feature selection techniques to specific learning al-
gorithms and datasets for optimal performance. The most
effective feature selection approach can vary across different
model architectures and datasets.



Fig. 3: F1-score vs. total training time across different datasets
of DS1 to DS5 across scenarios S0 and S1.

1) Impacts of Individual Feature Selection Methods: This
set of experiments is to evaluate the effects of different feature
selection methods on our models. Examining scenarios S0
and S1 across different datasets (Figure 3) reveals significant
positive effects of feature selection on DL models. For instance,
CNN models show significant improvements, with F1-scores
increasing from 16% to 99% using χ2 and PCA in DS1, and
from 61.33% to 98% using RF in DS5. NN models also face
big changes, particularly with the trank method boosting F1-
scores from 43% to 99.39% in DS1, and RF improving from
1% to 99.47% in DS3. BERT models perform consistently
across all datasets, with F1-scores rising from 94.81% to 98-
99% in DS1 using various methods, often coupled with reduced
training times of more than 50% (e.g., from over 200 minutes
to 50 minutes). AE models, while already performing well in
DS1, DS2, and DS3, show improvements with PCA and MI
in DS4 and DS5. These results underscore the potential of

feature selection to enhance DL model performance in anomaly
detection tasks.

Among machine learning models, XGBoost depicts a signif-
icant improvement on the DS1, DS3 and DS4 datasets, where
the F1-Score increased from 38.15% to 93.41% using the χ2

feature selection method.

Fig. 4: F1-score vs. total training time across different datasets
of DS1 to DS5 across scenarios S0 (baseline) and S3 (balancing
before feature selection).

2) Impacts of Feature Selection and Data Balancing:
The interplay between feature selection and data balancing
significantly affects the performance of anomaly detection
models. Comparing scenarios S0 (baseline), S3 (balancing
before feature selection), and S4 (balancing after feature se-
lection) further insights in our experiment (Figures 4 and 5).
CNN models showed substantial improvements, with F1-scores
increasing from 16% to 70% using PCA in DS1, and from
37.21% to 98.24% using MI, RF, and SKB in DS2. NN mod-
els demonstrated dramatic enhancements, particularly in DS3,



where the F1-score rose from 1% to 99% using RF. AE models
also benefited, with F1-scores in DS4 improving from 50%
to 95% using PCA. The order of applying feature selection
and data balancing proved crucial; in DS4, the CNN model
improved from 60% to 98% when feature selection (using MI,
PSO, SKB, and RF) was applied after balancing. PCA emerged
as a consistently effective method across various scenarios and
datasets, underscoring its robustness in enhancing DL model
performance for anomaly detection tasks in this scenario.

Fig. 5: F1-score vs. total training time across different datasets
of DS1 to DS5 across scenarios S0 (baseline) and S4 (balancing
after feature selection).

3) Impact of Hyperparameters: As shown in Figure 6, the
impact of hyperparameters on feature selection is explored
by comparing scenarios S5 and S6. This analysis reveals
varied impacts on model performance. In DS1, the CNN
model experiences an increase in F1-Score with various feature
selection methods in S6 (e.g., from 13.33% to 98.33% with

χ2). In DS2, the AE model demonstrates a positive impact of
combined hyperparameter tuning and feature selection, with
the F1-score increasing to 99.51% using PSO, SKB and RF
feature selection in S6. In DS3, CNN model with PSO and
RF faces a substantial increase in F1-Score from 42.40% to
99.56% in S6. For ML models, IF with χ2 feature selection
shows improvement, with the F1-score increasing from 38.15%
to 93.41% in S6 for DS1. These results suggest that the com-
bination of hyperparameter tuning and feature selection can
significantly enhance model performance, but the effectiveness
varies across different models and datasets.

Fig. 6: F1-score vs. total training time across different datasets
of DS1 to DS5 across scenarios S5 (hyperparameter tuning
without feature selection) and S6 (hyperparameter tuning with
feature selection).

4) Best Model and Scenario Selection: Our evaluation re-
veals that optimal strategies for anomaly detection systems
vary significantly based on data and model characteristics.



Fig. 7: Correlation between data complexity and G-Mean across various feature selection techniques. The x-axis represents
different combinations of datasets ranging from single datasets to all five combined.

The BERT model with trank feature selection (scenario S8)
achieves 99.70% F1-Score in 60 seconds for DS1, while the AE
model using Mutual Information (scenario S4) attains 99.50%
F1-Score in 1,727 seconds for DS2. The CNN model with MI
feature selection (scenario S1) performs well on the largest
dataset (DS3), achieving 99.50%. MI and RF feature selection
methods consistently enhance performance across multiple
models and datasets. The order of applying feature selection
and data balancing significantly impacts performance, with
post-balancing feature selection often yielding better results.
Table II presents the top five combinations, balancing perfor-
mance and computational efficiency across diverse datasets.
These findings quantify the differences in model-feature-data
interactions, providing practitioners with valuable insights for
optimizing anomaly detection systems in specific use cases.

Dataset Model Feature
Selection Scenario F1-Score F1-Macro Total Time (s)

DS1 BERT trank S8 0.997 0.989 60.138
DS2 AE MI S4 0.995 0.984 1727.421
DS4 XGBoost MI S3 0.996 0.996 184.534
DS2 IF RF S1 0.996 0.985 1.923
DS3 CNN MI S1 0.995 0.984 1727.421

TABLE II: Top-5 model and scenarios.

C. Impact of Data Augmentation

We analyze the impact of data augmentation on model
performance using various dataset combinations from the IoT-
23 collection. As shown in Figure 7, the G-Mean metric
fluctuates as more datasets are incrementally added, indicating
that the effects of augmentation can vary significantly. While
augmentation helps balance sensitivity and specificity, its ben-
efits are not universal across all scenarios.

Correlation
Function Metric Complexity

Measure Correlation Model Scenario
(Si)

Feature
Selection

Pearson G-Mean F1 -0.66 CNN S1 Chi2
Spearman G-Mean F1 -0.67 CNN S1 Chi2
Spearman F1-Score F1 -0.69 CNN S1 Chi2
Pearson F1-Score C1 -0.70 CNN S1 Chi2
Spearman F1-Macro F1 -0.69 CNN S1 Chi2
Pearson F1-Macro C1 -0.75 CNN S1 Chi2
Spearman G-Mean F1 -0.53 AE S4 PCA
MIC F1-Score F1 0.79 NN S1 trank
MIC G-Mean C1 0.80 CNN S1 Chi2
MIC G-Mean F1 0.93 NN S4 MI
MIC F1-Score L2 0.63 XGBoost S1 -

TABLE III: Metrics and complexity measures correlations.

Table III highlights strong positive correlations, particularly
for NN and CNN models, between MIC and performance
metrics, suggesting that MIC could be a useful indicator of
model performance under data augmentation. However, other
correlation measures, such as Pearson and Spearman, show
that increased data complexity might negatively affect metrics
like F1-Macro and G-Mean, especially in CNN models. This
indicates that while data augmentation can enhance model
performance, it may also introduce complexity that hinders
results under certain conditions. Future research should focus
on understanding these dynamics more clearly and identifying
the optimal conditions for using data augmentation effectively.

D. Impacts of Combined Feature Selection Methods

The results of our study reveal that combined feature selec-
tion methods do not exhibit a consistent impact when applied
across models, scenarios, and datasets. In some cases, they
significantly enhance performance (e.g., majority voting in
DS2 improved F1-score from 30% to over 95%). However,
effectiveness varies widely, with some combinations yielding
substantial improvements while others show negligible or neg-
ative impacts. Computational cost is a critical factor, some-
times outweighing performance gains. For example, BERT on
DS5 achieved 99% F1-Score with RF feature selection in 39
minutes, but performance decreased when applying all feature
selections, taking 134 minutes. This variability emphasizes the
need for case-by-case evaluation, considering both performance
and computational efficiency for specific datasets and models.

VI. CONCLUSION

While many IoT security works employ anomaly detection,
they often overlook the impacts of feature selection and data
balancing. Our study shows these elements significantly influ-
ence model performance, depending on dataset characteristics
and processing methods. Our framework optimizes configura-
tions for specific datasets, potentially enhancing existing tools.
Future work will address current limitations by incorporating
generative models, conducting real-world testing, and validat-
ing across a broader range of IoT-related datasets, aiming to
generalize our findings and provide more conclusive metrics
for data augmentation decisions.
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