
A Tenant-based Two-stage Approach to Auditing the Integrity of
Virtual Network Function Chains Hosted on Third-Party Clouds

Momen Oqaily
CIISE, Concordia University

Montreal, Canada
m_oqaily@mail.concordia.ca

Suryadipta Majumdar
CIISE, Concordia University

Montreal, Canada
suryadipta.majumdar@concordia.ca

Lingyu Wang
CIISE, Concordia University

Montreal, Canada
lingyu.wang@concordia.ca

Mohammad Ekramul Kabir
CIISE, Concordia University

Montreal, Canada
m_kabi@encs.concordia.ca

Yosr Jarraya
Ericsson Security Research

Montreal, Canada
yosr.jarraya@ericsson.com

A S M Asadujjaman
CIISE, Concordia University

Montreal, Canada
asm.asadujjaman@mail.concordia.ca

Makan Pourzandi
Ericsson Security Research

Montreal, Canada
makan.pourzandi@ericsson.com

Mourad Debbabi
CIISE, Concordia University

Montreal, Canada
debbabi@encs.concordia.ca

ABSTRACT
There is a growing trend of hosting chains of Virtual Network
Functions (VNFs) on third-party clouds for more cost-effective de-
ployment. However, the multi-actor nature of such a deployment
may allow a mismatch to silently arise between tenant-level speci-
fications of VNF chains and their cloud provider-level deployment.
Most existing auditing approaches would face difficulties in identi-
fying such an integrity breach. First, relying on the cloud provider
may not be sufficient, since modifications made by a stealthy at-
tacker may seem legitimate to the provider. Second, the tenant
cannot directly perform the auditing due to limited access to the
provider-level data, and shipping all such data to the tenant would
incur prohibitive confidentiality concerns. In this paper, we pro-
pose a tenant-based, two-stage solution where the first stage lever-
ages tenant-level side-channel information to identify suspected
integrity breaches, and the second stage then automatically iden-
tifies and anonymizes selected provider-level data for the tenant
to verify the suspected breaches from the first stage. The key ad-
vantages of our solution are: (i) the first stage gives tenants more
control and transparency (with the capability of identifying in-
tegrity breaches without the provider’s assistance), and (ii) the
second stage provides tenants higher accuracy (with the capability
of rigorous verification based on provider-level data). Our solution
is integrated into OpenStack/Tacker (a popular choice for NFV de-
ployment), and its effectiveness is demonstrated via experiments
(e.g., up to 90% accuracy with the first stage alone).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0067-5/23/04. . . $15.00
https://doi.org/10.1145/3577923.3583643

CCS CONCEPTS
• Security and Privacy;

KEYWORDS
Cloud Security, NFV Security, BlackBox auditing, Security auditing

ACM Reference Format:
Momen Oqaily, Suryadipta Majumdar, Lingyu Wang, Mohammad Ekra-
mul Kabir, Yosr Jarraya, A S M Asadujjaman, Makan Pourzandi, and Mourad
Debbabi. 2023. A Tenant-based Two-stage Approach to Auditing the In-
tegrity of Virtual Network Function Chains Hosted on Third-Party Clouds.
In Proceedings of the Thirteenth ACM Conference on Data and Application
Security and Privacy (CODASPY ’23), April 24–26, 2023, Charlotte, NC, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3577923.3583643

1 INTRODUCTION
Network Functions Virtualization (NFV) enables on-demand and
cost-effective deployment of network services as chains of VNFs on
top of an existing cloud infrastructure [11]. A growing trend in NFV
is to host the VNFs on third-party clouds for more cost-effective
deployment [2, 18, 56], e.g., DISH Network is reportedly deploying
its cloud-native 5G network in AWS Cloud [2], and VMware is
enabling communications service providers to accelerate the de-
ployment of their VNFs on its VMware Telco Cloud platform [56].
In such scenarios, the provider manages all the virtual and physical
resources needed for deploying the specified network services by
tenants as a chain of VNFs. Despite its obvious benefits to NFV
tenants, the multi-actor nature of such deployment may lead to
novel security threats. In particular, potential integrity breaches
may silently arise due to unintentional misconfigurations [28] or
malicious intents [49] to cause harmful inconsistencies between
tenant specifications and their provider deployment.

Most existing security auditing1 approaches for NFV (a detailed
review of related works is in Section 6) would face difficulties

1We focus on auditing the integrity of VNF chains (i.e., matching deployment with
specification) instead of detecting attacks that cause integrity breaches.

79

https://doi.org/10.1145/3577923.3583643
https://doi.org/10.1145/3577923.3583643
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577923.3583643&domain=pdf&date_stamp=2023-04-24

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Momen Oqaily et al.

against such integrity breaches mainly due to the following chal-
lenges. First, relying on the cloud provider (e.g., [26, 62]) may be
impractical (as many providers may be reluctant to take the bur-
den of conducting security auditing on behalf of their tenants) or
insufficient (as providers typically do not understand tenant-level
requirements, e.g., modifying compromised switch forwarding rules
may seem wrong to the tenant, but legitimate to the provider). Sec-
ond, relying on the tenant alone (e.g., [40]) may not be feasible,
either, as the tenant typically has limited access to provider-level
data, and shipping all such data to the tenant could incur prohibi-
tive overhead and confidentiality concern. Based on comprehensive
studies and existing literature [1, 21], it becomes evident that a
novel solution is required to tackle those challenges.
High level motivating example, naive solutions, and our pro-
posed ideas.. Figure 1 shows a motivating example to highlight
the problem (left), limitations of naïve solutions (middle), and our
main ideas (right).

The Problem: The left side of Figure 1 illustrates an example of
an integrity breach and the limitation of provider-based auditing.
Specifically, the top shows a chain of three VNFs (vFW, vDPI, and
vIDS) specified by the tenant, and the bottom depicts that the cloud
provider deploys those VNFs on three VMs. Suppose, due to an
unintentional misconfiguration [58] or through the exploitation of
compromised resources, an attacker (e.g., a co-located tenant) [28]
can modify the switch forwarding rules to redirect traffic flowing
through the chain to the malicious VM (i.e., VM Mal) into the chain.
Since the chain now deviates from its specification, it allows the
attacker to steal information, and hence, such a modification repre-
sents an integrity breach to the tenant. However, the modification
may seem legitimate to the provider, as it is coming from a (seem-
ingly) legitimate tenant, and therefore any provider-based auditing
mechanism will likely miss such breaches. Therefore, relying on the
provider alone may be insufficient due to its lack of understanding
of tenant requirements, which motivates a tenant-based solution.

Tenant-based Naïve Solutions: The middle of Figure 1 illustrates
the limitations of two naive solutions. In the first solution, the tenant
typically has limited access to provider-level data (e.g., detailed logs
or databases), and therefore it cannot directly audit the provider.
In the second solution, even if the provider is willing to share,
such a data transfer process may lead to prohibitive overhead and
confidentiality concerns due to the multi-tenancy nature of NFV.

Our Ideas: The right side of Figure 1 illustrates our main ideas.
Intuitively, we keep the auditing workload mostly on the tenant
and only involve the provider to share selected anonymized data
upon “sensing” (hence NFVSense) suspects of integrity breach. First,
as illustrated by the clock and packet icons in the figure, the ten-
ant identifies suspected integrity breaches based on tenant-level
side-channel information. Second, it performs formal verification
on selected provider-level data (which would be automatically iden-
tified and anonymized) to confirm (or reject) such suspects.

Specifically, we propose NFVSense, a tenant-based, two-stage
approach to audit the integrity of VNF chains hosted on third-
party clouds. In the first stage, NFVSense combines tenant-level
side-channel information with machine learning (ML) techniques
to identify potential suspects of integrity breaches. As such an
approach will likely introduce false positives, the second stage

automatically crafts selective data requests to the provider for each
suspect from the first stage, anonymizes the data before returning
it to the tenant, and finally performs rigorous verification based on
such data to confirm (or reject) the suspects. We implement and
integrate NFVSense into OpenStack/Tacker [33], a popular choice
for NFV deployment. We evaluate the accuracy and efficiency of
NFVSense through extensive experiments. In summary, our main
contributions are as follows.

• To the best of our knowledge, NFVSense is the first tenant-
based approach to auditing the integrity of VNF chains. The
two-stage design of NFVSense leads to two key advantages: i)
the first stage gives the tenant more control and transparency
to audit the underlying deployment; ii) the second stage
provides higher accuracy to the tenant who can perform
rigorous verification based on selected provider-level data
(which has been automatically identified and anonymized).

• To realize this two-stage design, NFVSense i) utilizes the
tenant-level side channel information using Network Perfor-
mance Tomography (NPT) and active probing techniques; ii)
conducts verification on selected and anonymized provider-
level data to audit the integrity of VNF chains hosted on
third-party clouds.

• The applicability of NFVSense is demonstrated through its in-
tegration into OpenStack/Tacker, a popular cloud/NFV plat-
form. Our experiments using several NFV datasets demon-
strate the effectiveness of NFVSense (e.g., up to 90% of accu-
racy with the first stage alone).

The rest of the paper is organized as follows. Section 2 provides
the preliminaries and our threatmodel. Section 3 details ourmethod-
ology. Section 4 presents implementation details and experimental
results. Section 5 discusses several aspects of NFVSense. Section 6
reviews the related works. Finally, Section 7 concludes the paper.

2 PRELIMINARIES
This section provides the essential preliminaries and defines our
threat model.
Background on NFV. NFV enables the virtualization of network
services and consists of two major abstraction levels as follows
(according to the ETSI NFV reference architecture [11]):

(1) Tenant Level: This level is specified and managed by an NFV
tenant who specifies its network services as a chain of several
VNFs, e.g., virtual firewalls and IDS.

(2) Provider Level: This level is managed by a cloud infrastruc-
ture provider who instantiates the tenant’s specifications of
VNFs using both virtual resources, e.g., VMs, and physical
resources, e.g., CPU and memory.

Rationale and Challenges in Using Performance-related Side-
channels. In the following, we explain our rationale to choose
performance-related side-channel information and then outline the
challenges that come with this side-channel.

Our Rationale.We choose NFV performance-related side-channel
information since, as Table 1 shows, there exist performance bottle-
necks at different NFV abstraction levels, which can provide useful
input for identifying any integrity breaches [3, 5, 7, 15], e.g., the

80

A Tenant-based Two-stage Approach to Auditing the Integrity of Virtual Network
Function Chains Hosted on Third-Party Clouds CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

vFW vDPI vIDS

1. Tenant audits the provider

2. Provider ships all logs to tenant

The modification
looks legitimate
to the provider

Stage1:Side-channel
for sensing

The problem Naïve solutions Our ideas

VM
FW

VM
DPI

VM
IDS

VM
Mal

No access

Prohibitive overhead and
confidentiality concerns

Tenant

Provider

Stage2: Selective
data for verification

Identification

Anonymization

Attacker modifies vSwitch forwarding rules

Figure 1: Motivating example

impact from the hardware level can be more severe than the virtu-
alization level [5]. The last column of Table 1 shows the parameters
we choose to extract side-channel information at the corresponding
level (the parameters selection are discussed in Section 3.2 and
evaluated in the experiments Section 4).

Challenges.Using NFV performance side channels for identifying
integrity breaches faces the following challenges, which will be
addressed in Section 3:

• LimitedData Access: Since tenants cannot access the provider-
level configuration, system-wide profiling tools to monitor
hardware-based performance counters (e.g., cache-references
or cross-system events, such as LinuxPerf [24] and OPro-
file [35]) cannot be utilized for our purpose.

• Performance Sensitivity and Probing Overhead: Network
performancemeasurements in NFV can be highly sensitive to
different factors (e.g., VNF’s functionalities [55] and network
workload [7]). Therefore, performance measurements must
be repeated under different combinations of workloads and
other parameters to ensure sufficient coverage.

• Fallacy of Profiling Standalone VNFs: The existing studies
(e.g., [40, 54]) show that performance measurements of VNFs
can change depending on their relative order in a chain. Also,
adding or removing VNFs from a chain may affect the over-
all performance [54]. Consequently, establishing the perfor-
mance profile of a chain can only be done by continuously
measuring and analysing the performance of the chain as a
whole after deployment [55].

• Other Performance Factors: There exist other factors that
impact the network performance, such as the status of the
VNF (e.g., active/passive) which may affect I/O waiting and
processing time. The network I/O overheads in the virtual
switches can affect the performance [55].

ThreatModel. The basis of our work is the “trust but verify” princi-
ple behind most security auditing techniques. More specifically, we
assume the cloud provider and its infrastructure are both trusted
by the tenant, but the tenant may still be concerned about un-
intentional user mistakes (made by cloud operators working for
the provider) or stealthy attacks (which evade detection by the
provider). Therefore, our solution is not meant to replace existing
security mechanisms (e.g., security auditing and attack detection)

Table 1: Excerpt of existing NFV performance bottlenecks.
Level Bottleneck Impact Parameter
Physical Memory size, number

of CPUs, disk operation
and hypervisor type

Variation in packet
processing time [5]

Unique gap in
RTT

Virtual I/O interrupts, number of
ports, virtual switching

VNF performance
degrades [15]

Probing window/
workload

Virtual
resources

Stateful and stateless
connections, VNF
functionality, VNF image

Longer packets
delivery time [7]

Connection type
and VNF type

of the provider, but rather to give the tenant additional control
through performing independent tenant-based auditing.

Under such assumptions, we focus on a specific class of in-scope
threats, i.e., integrity breaches in the form of invisible (to the ten-
ant) modifications to the provider-level deployment of VNF chains,
e.g., injection of malicious resources [6, 60], traffic redirection to
bypass VNFs such as firewalls [48], reduction in virtual and physi-
cal resources [61], etc. We assume such threats are not thwarted
by the provider because they come from external attackers who
exploit zero-day attacks, or from malicious insiders, or uninten-
tional user mistakes or misconfigurations caused by cloud operators
themselves.

The out-of-scope threats include any attacks that can breach the
integrity of network services without affecting network perfor-
mance at any NFV layer. Also, we do not consider attacks that are
directly visible to a tenant (e.g., removing a VM and its correspond-
ing VNF) and thus do not require our solution. Moreover, similar
to most side channel-based solutions (e.g., [58, 59]), we do not con-
sider truly malicious providers or powerful attackers who have
full control over the VNFs and thus can tamper with the captured
performance results or the VNFs running NFVSense, or who can
launch adversarial attacks against our tool (e.g., compromise the
VNF chain at deployment time, or tamper with the training process
using malicious samples). Finally, our work focuses on identify-
ing integrity breaches (the consequences) rather than detecting or
preventing attacks (the causes).

3 NFVSENSE
This section presents the methodology of NFVSense.

81

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Momen Oqaily et al.

3.1 Overview
As shown in Figure 2, NFVSense is comprised of the following two
stages: Stage 1: Identifying Suspect Breaches, and Stage 2: Selected
Data Verification.
Stage 1: Identifying Suspected Breaches. This stage is to iden-
tify suspected breaches by only using tenant-level side-channels
information as follows.

1. Information Gathering and Processing: When the chain is up
and running, NFVSense gathers tenant-level performance
measurements of the deployed topology as side-channel in-
formation, such as Round Trip Time (RTT). Using network
performance tomography and active probing, it first charac-
terizes the RTT between all pairs of VNFs in a tenant chain.
Then it processes the collected data (i.e., outlier detection
and filtering) to prepare for profiling in the next step.

2. Performance Profiling: Based on the impacts on the perfor-
mance measures of VNFs, NFVSense identifies breaches by
profiling the processed performance information as follows.
It first learns an Identification Model (i.e., a binary classifica-
tion ML model) to identify normal behavior and abnormal
behavior (resulted from integrity breaches) and then learns
a Classification Model (i.e., a signature-based multi-class clas-
sification ML model) to classify different types of breaches
based on their impact on performance.

3. Identifying Suspected Breaches: By implementing two ML
models (from Step 2), NFVSense identifies suspected breaches
in VNF chains and classifies them. Specifically, it first checks
the current network performance of all VNF pairs in the
chain with the identification model to identify any suspected
breach, then determines its type by using the classification
model. Finally, based on the type of the suspected breach,
a tenant queries the provider for selected data (e.g., port
forwarding rules for a set of VMs) for further verification in
Stage 2. We will further elaborate Stage 1 in Section 3.2.

Stage 2: Selected Data Verification. This stage is to conduct the
verification on anonymized provider-level data that are specific
to a suspected breach from Stage 1 and to confirm (or reject) it as
follows.

1. Selected Data Request: To minimize the overhead for the
provider, NFVSense only asks for selected provider-level data
relevant to a suspected breach based on its source and type.
For instance, if NFVSense suspects an integrity breach from
a malicious VM injection (as in Figure 1), it only requests
for the path forwarding logs of the VMs in the VNF chain
corresponding to the suspected breach.

2. Anonymized Data Preparation: The main goal of this step
is to provide property-preserved output that is suitable for
auditing tasks. NFVSense leverages iCAT [37] to anonymize
the selected provider-level data to ensure both the privacy
requirements of the provider and the utility requirements of
the tenant. Finally, the anonymized data is forwarded to the
following steps.

3. Data Verification: To confirm an actual integrity breach from
the suspects, NFVSense leverages existing verification so-
lutions (using formal methods [36]) or performs a manual

inspection on the anonymized data sent from the previous
step. If the suspected breach is confirmed (e.g., VM port for-
warding rules are modified), the tenant asks the provider for
further action (e.g., mitigate the breaches). We will elaborate
on Stage 2 in Section 3.3.

3.2 Stage 1: Identifying Suspected Breaches
In the following, we elaborate on the steps of Stage 1.
Information Gathering and Processing. To train the identifica-
tion and classification models (described in the next step), NFVSense
has to assess both the normal (i.e., breach-free condition) and the
abnormal behavior (i.e., breached conditions). Hence, in this step,
from the tenant level, NFVSense gathers and processes round trip
time (RTT) as side-channel information for a VNF chain deployed
at the provider level. More specifically, we adopt the following two
steps: i) to assess the normal behavior, NFVSense collects RTT val-
ues from 𝑡𝑖𝑚𝑒0 when the service is created and hence assumed to be
free of integrity breach; ii) to understand the abnormal behaviors,
NFVSense simulates different attack scenarios to mimic different
integrity breaches and collects respective RTT values.

To that end, NFVSense collects data from all VNF pairs after es-
tablishing an active probing connection between all VNF pairs. For
instance, if 𝑛 VNFs are in the chain, (𝑛 ∗ (𝑛 − 1))/2 active prob-
ing connections need to be established to cover all pairs of VNFs.
For each connection, different parameters (i.e., probing rate and
probing window, connection type) are also varied to profile the net-
work behavior for different settings. After that, NFVSense collects
RTT values in the probing responses accordingly and character-
izes them by correlating the RTT values with the corresponding
VNF chains. For this purpose, we adopt Network Performance To-
mography (NPT) [10] of NFV which only requires VNF’s usual
packet forwarding behavior. Specifically, we integrate a perfor-
mance measurement tool (e.g., IPerf [19]) into the VNF images. The
pseudo-code of this step is described in Algorithm 1.

Example 1. For the sake of illustration, we assume four NFV setups
corresponding to four different integrity breaches scenarios as fol-
lows: i) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜0: Initial integrity breach-free setup at 𝑡𝑖𝑚𝑒0 before
the attacker performs any modification; ii) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1: Malicious
VM injection (marked as 1○ in Figure 3); iii) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2: Reduction in
physical hosts (marked as 2○) and iv) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3: Traffic redirection
to a malicious VM (marked as 3○). For each scenario, the NPT is
collected between all pairs of VNFs in the chain while different
parameters like probing workload, probing window, connection
type, etc. are also varied. Note that the methodology of NFVSense
can be applied to other types of breaches as well, and also note
that 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 to 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3 are integrity breaches (i.e., the conse-
quences) rather than attacks (hence NFVSense can identify such
breaches regardless of the attacks causing the breaches).

To process the collected data for profiling, NFVSense: i) identifies
and filters out the outliers (e.g., extremely high RTT for the first few
probing packets compared to the rest [55], or lost probing packets)
in the network performance measurements using the Interquartile
Range [9]; ii) merges all the features in the collected data, namely,
the number of hops between source and destination of probes, VNF
functionality type, probing rate and probing window; and iii) adds
two ground-truth data labels to each probing record: integrity breach

82

A Tenant-based Two-stage Approach to Auditing the Integrity of Virtual Network
Function Chains Hosted on Third-Party Clouds CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

3) Identifying Suspected Breaches2) Performance Profiling

𝑉𝑁𝐹"

𝑉𝑁𝐹%

Side-channel
information
collection

Change-based
integrity model

Signature-based
integrity model

Suspected
breach

identification

Suspected
breach

labeling
Data
analysis

5) Anonymized Data Preparation

Data
extraction

6) Integrity Verification
Formal

methods

Stage 2

Stage 1 1) Info. Gathering and Processing

Integrity
breach report

4) Selective Data Request

Tenant-level Step Provider-level Step

Data
specification

Data
anonymization

Manual
analysis

…

Figure 2: An overview of NFVSense.

VM-
FW

VM-
DPI

VM-
IDP

DSTSRC

VM-
Mal

FW IDP
SRC DST

DPI

VM-
Mal

Host2Host1

Passive VM insertion

VM insertion

Physical hosts reduction

Tenant-level
Specifications

Provider-level
Deployment

Figure 3: Example of different primitive scenarios for in-
tegrity breaches: i) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1: VM injection; ii) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2: Phys-
ical hosts reduction; and iii) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3: Passive VM injection.

Algorithm 1 Network Performance Tomography

1: Input: SubChai[], Rate[], Win[]
2: Output: NPT[]
3: for (s in range(Len(SubChai[]))) do
4: for (r in range(Len(Rate[]))) do
5: for (w in range(Len(Win[]))) do
6: Hops = Len(SubChai[s])
7: RTT = IPerf(SubChai[s], Rate[r], Win[w])
8: NPT[s] = [SubChai[s], Hops, Rate[r], Win[w], RTT]
9: Return (NPT[])

for indicating whether there is an integrity breach in a node pair
and breach type (e.g., 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1-𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3 as mentioned in Example
(1) from which those measurements are collected.
Performance Profiling. This step tends to profile the labeled RTT
data by learning two separate ML models: a binary classification
based Identification Model for identifying suspected breaches and
a multi-class signature-based Classification Model for classifying
the suspects. This separation of models: i) allows NFVSense to iden-
tify suspected integrity breaches beyond those example scenarios
(i.e., 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜0-𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3) as it mainly checks any deviation from
the normal behavior; ii) improves the identification accuracy as
it reduces the complexity of the trained models by reducing the
dimension of the training dataset, and iii) improves the efficiency of
NFVSense as the classification model is only triggered when there is

a suspected breach. We elaborate on learning each of those models
as follows:

• First, we learn the identification model to profile the normal
behavior between all pairs of VNFs based on the integrity
breaches-free setup. The objective of this model is to iden-
tify any deviation from the normal behavior (i.e., integrity
breach-free setup) to identify integrity breaches.

• Second, we learn the classification model to learn the breach
types by observing the patterns to extract each breach’s
signature. The objective is to differentiate between the sus-
pected breaches based on their signature.

Identifying SuspectedBreaches.This step implements the trained
identification and classificationML models to identify and then clas-
sify suspected breaches.

• NFVSense identifies the suspected breaches in a VNF chain
by using the identification model. Specifically, this model
compares the similarity of the measured performance fea-
tures from the probing packets with the learned performance
profiles (i.e., the normal behavior), and any deviation from
the normal behavior indicates a suspected breach. Note that
to identify suspected breaches, instead of using a single prob-
ing packet, the model tests a stream of packets to compare
them against the normal profile and hence attains a higher
accuracy. Algorithm 2 is the pseudo-code of this step.

• After identifying a suspected breach, NFVSense classifies that
breach by using the classification model. Specifically, using
this model, NFVSense maps the deviated behaviors in the
extracted integrity breach signatures into two levels: physical
resource level and virtual resource level, where the integrity
breaches related to changes in the physical resource level
have distinct performance gaps compared to the breaches
related to the virtual resource level, as discussed in Table 1.

• Then NFVSense notifies the tenant about its findings to trig-
ger Stage 2 (for further verification) to confirm or reject the
decisions made in Stage 1.

Example 2. For 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 (refer to Figure 3), NFVSense identifies
the suspected breaches as follows. As the packets delivery gaps
between 𝑉𝑀𝐷𝑃𝐼 and 𝑉𝑀𝐼𝐷𝑃 are expected to be lower compared

83

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Momen Oqaily et al.

Algorithm 2 Integrity Breach Identification

1: Input: Sub-chains[], Rate[], Window[], BreachDetec()
2: Output: Decision[]
3: Normal=0, Abnormal=0
4: for (s in range(Len(Sub-Chains[]))) do
5: for (r in range(Len(Rate[]))) do
6: for (w in range(Len(Window[]))) do
7: RTT = IPerf(Sub-chain[s], Rate[r], Window[w])
8: Class=BreachDetec(RTT)
9: IF (Class==1) {Normal++}
10: ELSE {Abnormal++}
11: IF(Normal ≥ Abnormal)
12: Decision[j][i]=1
13: ELSE
14: Decision[j][i]=0
15: Return(Decision[])

to the normal behavior since the virtual switch level consumes
less time to deliver the traffic between these two VMs running on
the same physical hosts. Consequently, this leads the identification
model to raise an alarm of a suspected breach. Then using the
classification model, NFVSense maps the suspected breach with the
pre-defined breaches (i.e., 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 to 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3 as described in
Example 1). More specifically, the RTT values would be lower after
the reduction in physical host (𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2) compared to themalicious
VM injection (𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1), where the virtual switch level forwards
the traffic to an extra VM (i.e., a malicious VM) in a VNF chain.
On the other hand, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 has higher RTT values compared to
the traffic redirection breach (𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3), where the virtual switch
duplicates the traffic to the injected passive VM, 𝑉𝑀𝑀𝑎𝑙 . Hence,
by this mapping, NFVSense determines the suspected breach as a
potential reduction in physical host attack.

3.3 Stage 2: Selected Data Verification
In the following, we elaborate on the steps of Stage 2.
Selected Data Request. This step is to request the provider for
specific data related to the suspected breach. More specifically,
NFVSense considers the decision made by Stage 1 (i.e., the identified
and classified suspected breaches) to determine which provider-
level data is required to verify those decisions, and requests the
provider to send those related logs accordingly. If the location
of the suspected breach is identified and traced to a specific pair
of VNFs based on the built performance profiles and measured
performance metrics, then NFVSense requests only the provider-
level logs which correspond to those VNF deployments at the tenant
level. On the other hand, if the class of the suspected breach is
not identified (i.e., a breach is suspected but cannot be classified),
NFVSense queries the log of all cloud services for a specific time
range (i.e.,𝑇𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 −𝑇𝑁𝑜𝑟𝑚𝑎𝑙), where𝑇𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 is the time when
the suspected breach is identified, and𝑇𝑁𝑜𝑟𝑚𝑎𝑙 is the last time when
there was no breach. The details of locating the suspected breach
are described in Algorithm 3 as follows.

Example 3. Table 2 shows an example (from OpenStack [32], a
popular cloud platform) of event logs specific to different services
(e.g., computing, networking, etc.) at the provider level; part of

Algorithm 3 Integrity Breach Locator

1: Input: Sub-chains[], Decision[][]
2: Output: Loc[]
3: Loc[2]=NULL
4: NumofHops=1
5: for (s in range(Len(Sub-Chains[]))) do
6: for (r in range(Len(Sub-Chains[]))) do
7: IF(NumofHops!=0)
8: IF (Decision[j][i]==1 && Decision[j+1 [i+1]==0)
9: Loc[0]=VNFlist[i]
10: Loc[1]=VNFlist[j]
11: NumofHops=j;
12: Return(Loc[])

Table 2: An example of event logs for different cloud services
in OpenStack [32]

Level Service Project Example Events

Physical
Computing Nova Add host, List Migrations
Networking Neutron Create port, Delete subnet
Switching Open VSwitch Add bundle, Delete bridge

Virtual SFC Tacker Create VNF, Delete SFC

which can be requested during this step for any suspected breach.
Due to a suspected breach related to 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, between the VNF
pairs 𝑉𝑁𝐹𝑥 and 𝑉𝑁𝐹𝑦 , the tenant will query the provider for the
ports forwarding logs of the corresponding VMs 𝑉𝑀𝑥 and 𝑉𝑀𝑦

from the Neutron service in OpenStack. Similarly, other selected
provider-level data can be requested for other types of breaches
such as OpenVswitch and Nova logs for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 and 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3.

Anonymized Data Preparation. Though the previous step can
minimize the overhead of sending all logs to the tenant, that can
not ensure the privacy and confidentiality of both the provider
and other tenants. For example, important network configuration
information (i.e., potential bottlenecks and topology of the net-
work) may be inferred from the logs and subsequently exploited
by adversaries [37]. To address this concern, in this step, NFVSense
leverages iCAT [37] to anonymize the logs, while this tool meets
both the provider’s privacy requirements along with the tenant’s
utility requirements. To that end, iCAT leverages natural language
processing techniques to translate those requirements and find the
most suitable anonymization primitives to meet the requirements.
Hence the confidentiality concern of the provider in sharing data
is addressed, while auditing at the tenant level is enabled.

Example 4. To verify the suspected breach in 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, the ten-
ant’s utility requirement is the Sequence of the events must be pre-
served (i.e., the events must be persevered chronologically in the
anonymized output). On the other hand, the provider’s privacy
requirement is all tenants’ network topologies should be unidentifi-
able. Considering those requirements, the leveraged anonymiza-
tion tool first determines the suitable anonymization primitives
(e.g., timestamp shifting, IPs truncation, etc.) and then produces an
anonymized output (i.e., ports forwarding logs).

84

A Tenant-based Two-stage Approach to Auditing the Integrity of Virtual Network
Function Chains Hosted on Third-Party Clouds CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Figure 4: Anonymized Nova logs related to integrity breach.

Integrity Verification. NFVSense can leverage existing auditing
tools or perform a manual inspection on the received anonymized
data to validate the suspected breaches identified in Stage 1. To that
end, we utilize a formal security verification tool, NFVGuard [36] to
formally verify the alerts generated by NFVSense. NFVGuard veri-
fies chain integrity using the formal method in two steps. First, VNF
Forwarding Graph (i.e., VNFFG, a feature used to orchestrate and
manage traffic through VNFs) configuration consistency properties
are applied to verify consistency between the VNFFGs specifica-
tion uploaded by the tenants (such as the size of VNFFG and the
sequences of VNFs) and their corresponding implementation. Sec-
ond, The VNFFG configuration consistency properties are applied
to verify the consistency between the created SFCs and hardware
implementation. If either property does not hold in the deployed
NFV system, it means that there is a breach to the integrity of the
underlying deployment. In practice, the tenant admins can further
manually inspect the logs to verify the integrity of the SFC.

Example 5. In the case of 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, the tenant will look for system
event logs in the computing service, Nova in OpenStack, resulting
from deleting a physical server. Figure 4 shows a snippet of the
Nova anonymized logs for the deleted host event. From this log
entry (highlighted in red), NFVSense confirms the breach from the
host creation and deletion time (i.e., created-at and deleted-at) and
the success of the deletion operation (i.e., deleted:Yes).

4 IMPLEMENTATION AND EXPERIMENTS
This section describes the implementation and experiment results.

4.1 Implementation
We implement and integrate NFVSense into OpenStack/Tacker [33],
which is a popular NFV management platform. Specifically,
NFVSense is implemented in Python, by leveraging the NumPy
and Pandas [31] libraries for gathering NFV performance measure-
ments (RTT for this case), and scikit-learn [43] for implementingML
models. Finally, we use our designed anonymization tool iCAT [37]
to generate the anonymized proofs for verification. All the VNFs
are built based on the official Ubuntu 18.04 cloud image customized
by Canonical to run on public clouds [52]. We follow the model
stated in [55] to configure our VNFs and use Open vSwitch [41] to
manage the connectivity between them.

4.2 Experimental Environment
This section describes our experiments datasets and environment.
Dataset Description. We consider both real and synthetic data
to evaluate NFVSense effectiveness. We collect and generate four
datasets, 𝐷𝑆0-𝐷𝑆3, for four scenarios (as shown in Figure 3), re-
spectively. In summary, a dataset of size 4.5 GB corresponding to
three different integrity breach scenarios are used, while over 136K
probing requests are generated on four scenarios, where four VNF

images and two physical hosts are used. During probing, we vary
the traffic to four different workloads, the probing period to three
different windows with two connection types (i.e., stateful and
stateless). In the following, we briefly explain how data is collected.

• Real Data:We implement an NFV testbed to collect real data
from the NFV stack. We use Python scripts to automatically
generate TOSCA templates in order to deploy NFV entities,
such as VNFs and VNFFGs. In our implementation, we de-
ploy three different VNF images for widely-used network
services: (i) Tcpdump [47], a network data packet analyzer
with the default configuration, (ii) Snort [45], a network in-
trusion, detection, and prevention system configured with
the default rules, and (iii) IPtables [30], a firewall program for
Linux configured with 50 rules (in a way that only the last
rule matches with our probing traffic and the VNF checks
all rules). On each VNF, we implement NPT for character-
izing NFV performance measurements using IPerf3 [19], a
tool that can produce standardized performance measure-
ments for any network, and Bash scripting to perform active
probing between all pairs of VNFs in a chain while varying
different probing parameters (i.e., probing rate, probing win-
dow, connection type). For each probing packet, we log the
source and destination nodes, the number of hops between
them, and the resulting RTT.

• Synthetic Data:We provide an option inNFVSense that is only
enabled when a tenant cannot gather a sufficient amount of
training data for ML models due to the higher cost of contin-
uously obtaining labeled data (e.g., via manual efforts) [50],
or the overhead of substantial probing traffic using NPT [40].
This alternative option generates synthetic training data us-
ing generative adversarial network (GAN) models [46]. In
contrast to most existing works that apply GAN to deceive
systems (e.g., IDS [22], steganalyser [57]), we leverage GAN,
similarly as in [17, 44], to generate synthetic network traffic
data that would be similar to the real flow data obtained
through active probing. More specifically, by generating re-
alistic data, GAN solves the challenge of acquiring “labeled
data” for training our ML model [17] along with ensuring
a negligible overhead compared to the imposed overhead
by the NPT step. To evaluate the effectiveness of GAN in
generating synthetic data, we compare the performance of
NFVSensewith andwithout data synthesis in the next section.
Note that the synthetic data generated by GAN is proposed
as an auxiliary source of data, only when real data are scarce.

For the experimental setup, we deploy 31 types of VNFs (e.g.,
with autoscaling policies, dedicated subnet, floating IPs, etc.), and
seven variations of VNFFGs to create sufficient diversity in the
corresponding event sequences. We also randomize a few important
parameters in the template description: 1) the number of virtual
network ports per VNF, 2) the number of deployment units per
VNF, 3) the node Flavor specification for each VDU, 4) the number
of VNFs for each Network Forwarding Path (NFP), 5) the order of
VNFs for each NFP, 6) the flow-classifier criteria for each NFP, and
7) the number of NFPs for each VNFFG.

85

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Momen Oqaily et al.
Tr

ue
 P

os
iti

ve
 R

at
e

False Positive Rate False Positive Rate False Positive Rate

c) Accuracy evaluation of 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜!b) Accuracy evaluation of 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜"a) Accuracy evaluation of 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜#

A
U

C

d) AUC evaluation

Scenarios Number of different Probing rates Number of different packet streams

e) Accuracy for probing rates f) Accuracy for packet stream

A
cc

ur
ac

y
(%

)

Figure 5: NFVSense Stage 1 evaluation.

Environment Setup. All the experiments are conducted on Su-
perServer 6029P-WTR running the Ubuntu 18.04 operating sys-
tem equipped with Intel(R) Xeon(R) Bronze 3104CPU 1.70GHz and
128GB of RAM without GPUs. Moreover, the NFV stack implemen-
tation to collect the real datasets follows the four scenarios (shown
in Figure 3). To evaluate the accuracy (AUC) of NFVSense, we imple-
ment, train, and deploy different ML models: Decision Tree (DT),
Random Forest (RF), k-nearest neighbors (kNN), and Support Vector
Regression (SVR).

4.3 Experimental Results
We evaluate the accuracy (AUC) of Stage 1 for identifying the
suspected breaches, and the corresponding resource consumption.
Afterward, we evaluate the performance of Stage 2 in confirming
(or rejecting) the findings of Stage 1 (i.e., suspected breaches) by
using selective data.
Evaluation of Stage 1 in Identifying Suspected Breaches. The
first set of experiments (Figure 5) is to evaluate the accuracy of Stage
1 in identifying suspected breaches. We use the dataset without a
breach, 𝐷𝑆0, to train the identification model to learn the normal
behavior, and the three datasets having breaches (𝐷𝑆1-𝐷𝑆3) for
validating and testing the model (10% of data are for validating and
90% of them are for testing). To avoid overfitting, we run our exper-
iments up to 100 epochs. We also use an early stopping mechanism,
while the trigger parameter is set to early-stop-threshold = 5, which
means that during the training period, the accuracy is calculated
after each epoch, and if there is no improvement in the accuracy
of the validation set compared to the training set for consecutive
five epochs, the training process stops. Finally, we set the length of
packet trains and the number of different probing rates to four (a

study on the selection of these parameters is shown in Figures 5.e
and 5.f). Figures 5.(a-c) show the identification accuracy of Stage 1
for different integrity breach scenarios and different ML algorithms.

Among all four ML algorithms, the SVR achieves the best accu-
racy in all cases, as it tries to fit the best line within a threshold
value that separates the normal behavior from the deviated one.
The accuracy is also dependent on the integrity breach scenario
as depicted in Figure 5.d. For 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 (i.e., malicious VM injec-
tion), the AUC value is about 89%, while for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 (i.e., one
physical host is deployed instead of two), the 𝐴𝑈𝐶 value increases
up to 91.92%. For 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, SVR achieves the best accuracy due
to having the highest impact on the measured performance [5].
Finally, for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3 (an adversary inserts passive and malicious
VM to the chain), Stage 1 achieves the AUC of 84.3% as depicted in
Figure 5.c. The accuracy of the results related to this scenario is the
lowest due to the performance profiles at low probing rates being
very close to the scenario without a breach (i.e., normal behavior),
and the effect of this scenario only appears at higher probing rates.
This is because the observed delay on the end-to-end service results
from the delay caused by the OvS duplicating the traffic to the pas-
sive malicious VNF, and it only creates a distinct difference when
the amount of traffic to be duplicated is higher. Figures 5.e and 5.f
show the accuracy of identifying the suspected breaches by the
SVR model while varying the performance profiling parameters,
i.e., the length of a packet stream and the probing rates.

During measurements for each scenario, we fix one parameter
and vary the other. For varying the number of probing rates, we
progressively increase the number of used probing rates (in KB/s),
i.e., 64, (64,128), (64, 128, 256), and so on. We observe that the ac-
curacy increases for all scenarios when we increase the number of
probing rates and the length of the packet stream. When both the

86

A Tenant-based Two-stage Approach to Auditing the Integrity of Virtual Network
Function Chains Hosted on Third-Party Clouds CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

b) Integrity breach verification c) Integrity breach classificationa) AUC evaluation

A
U

C

Scenarios

N
um

. o
f b

re
ac

he
s

Scenarios Scenarios
Figure 6: a) Stage 1 evaluation for integrity breach classification, b) evaluation of Stage 2 performance in correctly identifying
integrity breaches from Stage 1, and c) evaluation of Stage 2 performance in classifying the integrity breaches from Stage 1.

Ti
m

e
(m

)

M
em

or
y

(%
)

C
PU

 (%
)

a) Time evaluation by phase b) Memory evaluation by phase c) CPU evaluation by phase

Phase Phase Phase
Figure 7: NFVSense resource consumption evaluation.

length of a packet stream and the number of probing rates are set
to four, the accuracy becomes almost saturated (i.e., around 95%
for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2). As a result, the model decision is made to identify
suspected breaches based on the results of four probing samples
that cover four different probing rates. Also, even though the per-
formance profile of 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3 is the closest to the scenario without
a breach (as discussed above), our model successfully identifies it
and the accuracy increases significantly when increasing both the
number of probing rates and the length of the packet stream.
Evaluation of Stage 1 in Classifying Suspected Breaches. The
second set of experiments (Figure 6.a) is to evaluate the accuracy
of Stage 1 in classifying the suspected breaches. To that end, we
use 20% of the data to train the signature-based classification model,
while 5% for validation, and 75% for testing. Similar to the previous
set of experiments, we implement four ML algorithms and run our
experiments up to 100 epochs with an early stopping mechanism
(i.e., early-stop-threshold = 5). Figure 6.a shows that the Decision
Tree (DT) model achieves the best AUC compared to other ML
models for all three scenarios as it reduces the variance by creating
its predictions based on the training data. The DT model achieves
the AUC value of 95.1% for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1, 100% for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, and 94.2%
for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3. Note that Stage 1 attains the highest accuracy for
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 as there is a distinct gap between the data points of this
scenario compared to other scenarios.
Evaluation of Stage 2 in Verifying Selective Data. Figures 6.b
and 6.c show the outcomes of Stage 2 in verifying the suspected
breaches. The logs are anonymized by using iCAT [37] (an interac-
tive and customizable anonymization tool as discussed in Section
3.3), while Nova logs are used to evaluate 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 (i.e., physical
hosts reduction), and Neutron and OpenvSwitch logs are used to

evaluate 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 and 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3 (i.e., active and passive VM inser-
tion). Figure 6.b shows the number of breaches identified at two
stages (separately) compared to the ground truth. We can see that
Stage 1 identifies a slightly larger number of breaches compared
to the ground truth (i.e., 242 and 225 for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 and 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2,
respectively), which denotes false positives. However, due to Stage
2, we can successfully filter out those false positives from Stage 1.
Thus, in 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 and 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, 173 and 183 (respectively) of the
suspects are identified by Stage 2 to correspond to real integrity
breaches. In 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3, Stage 1 identifies a slightly lower number
of breaches compared to the ground truth (i.e., 165 for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜3),
which denotes few missed integrity breaches. Stage 2 filters out the
false positives and identifies 152 of those suspects corresponding
to real ones. Figure 6.c shows the number of classified suspected
breaches at two stages (separately) compared to the ground truth.
In this context, even though some false positives are generated by
Stage 1, Stage 2 filters the false positives and shows that there are
only a few misses by Stage 1, which joins the accuracy obtained
in the previous evaluation experiment. In summary, Stage 2 can
successfully filter out false positives generated by Stage 1. Further-
more, the total number of integrity breaches reported by Stage
2 indicates that the identification and classification of suspected
breaches by Stage 1 are fairly accurate concerning the ground truth
(e.g., for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, 183 out of 200 breaches are identified by Stage
1). Note that, the total number of false negative decisions is also
significantly low (e.g., for 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2, the number of false negatives
is 17 out of 200 breaches), but NFVSense cannot verify this false
negative decision using its Stage 2.
Evaluation of Resource Consumption. This set of experiments
(Figure 7) is to evaluate the time, CPU, and memory consumption

87

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Momen Oqaily et al.

d) Distribution of the synthetic flows compared to the real flows

D
at

a
di

st
rib

ut
io

n

Nodes code RTT

a) GANs success rate b) GANs G-loss c) GANs D-loss
Su

cc
es

s r
at

e
(%

)

G
-lo

ss

D
-lo

ss

e) Accuracy evaluation of Table2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Real data

Synthetic data

Figure 8: Synthetic data effectiveness evaluation.

Table 3: Datasets partitioning for synthetic data validation.

Source 𝑆𝑒𝑡𝑢𝑝1 𝑆𝑒𝑡𝑢𝑝2 𝑆𝑒𝑡𝑢𝑝3 𝑆𝑒𝑡𝑢𝑝4 𝑆𝑒𝑡𝑢𝑝5 𝑆𝑒𝑡𝑢𝑝6

Scenario 0/1 Real Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real Synth.
2k 0 2k 2k 4k 0 4k 20k 4k 30k 4k 40k

by Stage 1. Figure 7.a shows the time consumption of Stage 1 by
phase. Note that the scenario without a breach dataset (𝐷𝑆0) has
no testing time as it is only used for training the suspected breach
identification model, and this evaluation is based on the ML models
that achieve the best accuracy (i.e., SVR for identification model and
DT for classification model). This figure depicts that the most costly
operation by Stage 1 is to characterize network performance data
using NPT, where we collect performance statistics about the NFV
deployment to train the identification model. This observation indi-
cates that using GAN-generated synthetic data may reduce the data
collection time. On the other hand, Figures 7.b and 7.c show each
dataset’s memory and CPU consumption, respectively. Though the
probing step consumes a higher time, it consumes the lowest CPU
and memory resources. Also, synthesizing by GANs is the most ex-
pensive step in terms of CPU and memory consumption. However,
the CPU consumption (17%) and the memory consumption (15%)
for GANs are still not very high and might be affordable.
Synthetic Data Effectiveness. The final set of experiments (Fig-
ure 8) is to measure the effectiveness of our synthetically generated
data (using GAN). To that end, we evaluate the success rate of syn-
thetic data that is indistinguishable from the real one, and the losses
of the discriminator and the generator models, and conduct a com-
parison between the real and synthetic data distributions. Figure 8.a
depicts a summary of the effectiveness evaluation of GAN for 100
epochs, while on average, the success rate of the synthetic data is
around 95.7%. On the other hand, the average generator and dis-
criminator losses are only 3.3% and 0.14%, as shown in Figures 8.b
and 8.c, respectively. Such high accuracy indicates a successful gen-
eration of indistinguishable synthetic data, while Figure 8.d also

illustrates the similarity of the distribution of generated data (red-
shaded areas) with the real one (blue-shaded areas). Additionally, in
Figure 8.e, we evaluate the SVR model only on one integrity breach
dataset, 𝐷𝑆2 (i.e., physical host reduction scenario), to evaluate the
performance of the synthetic data in the identification accuracy of
the NFVSense using various partitioning setups between synthetic
and real data (as shown in Table 3). The figure demonstrates that
the synthetic data provides almost the same accuracy as the real
one. As an example, despite having different ratios of the real and
synthetic data, the two equal-sized datasets (i.e., 𝑆𝑒𝑡𝑢𝑝2 and 𝑆𝑒𝑡𝑢𝑝3
in Table 3) show almost the same identification accuracy. The iden-
tification accuracy also increases with the increased amount of
training data and hence, augmenting the real data (i.e., 4K) with
20K of synthetic data (𝑆𝑒𝑡𝑢𝑝4 in Table 3) increases the accuracy
significantly (92.1%), while this is 93.5% for 𝑆𝑒𝑡𝑢𝑝5. Thus, these
experimental results indicate that utilizing synthetic data where
collecting large-scale real data is infeasible might be an alternative
for the NFVSense users.

5 DISCUSSIONS
Auditing over Specific Attack Detection. Unlike crypto-based
solutions (e.g., AuditBox [25]), which are more specific and de-
pendant on specific attacks/intrusions, NFVSense aims to audit
integrity breaches in VNF chains, which could have been caused by
different attacks. However, it can only classify the type of breaches
in Stage 1 when the signature of such breaches is already available
in the models. To accommodate the retraining of the model with
new breach types, NFVSense would require human intervention to
manually label the data with the new signatures.

88

A Tenant-based Two-stage Approach to Auditing the Integrity of Virtual Network
Function Chains Hosted on Third-Party Clouds CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Requirements for Retraining Our Models. NFVSense’s ML mod-
els are not specific to any topology, as they are trained based on
the pairs of hops and not on the entire topology. Therefore, the
same model can be used for different topologies as long as the same
VNF images are used. On the other hand, the ML models require
retraining when the number of VNFs in a chain is increased.
VariousOptions for Stage 2Verification.The design ofNFVSense,
particularly its Stage 2, is as such that a wide range of existing tools
(e.g., VS [16]) can be leveraged for the verification step. In this
paper, we mainly leveraged formal methods (e.g., NFVGuard [36])
and manual inspection as examples. Nonetheless, other verification
tools can be leveraged.
Compatibility with Other NFV Platforms.NFVSense is designed
based on the generic NFV architecture and deployment model [11],
and all its modules are mostly platform-agnostic (except the learned
models). Therefore, NFVSense is a generic solution, which can con-
sequently be adapted to other NFV platforms (e.g., OSM [38] and
OPNFV [34]), by learning platform-specific models.
Online Training. The ML model of NFVSense is trained at deploy-
ment time (i.e, 𝑡𝑖𝑚𝑒0) where the NFV setup is first created and thus
assumed to be attack free. Therefore, such ML models are specific
to the actual setup and runtime configurations of the NFV. Unlike
existing works relying on offline training, we do not need to test all
possible combinations of VNFs (i.e., considering all possible types
of hardware and topologies in advance). However, once legitimate
changes are made to the topology/hardware, the ML models have
to be retrained. Hence, we plan to consider online training for the
ML models as a future direction to support dynamic changes.

Table 4: Comparing our work with existing solutions.
Work Run-time Dynamic Tenant-based Path Modif. Blackbox

vSFC [61] ✓ ✓ x ✓ x
FlowCloak [6] ✓ ✓ x ✓ x
AuditBox [25] ✓ ✓ x ✓ x
SFC-Checker [51] x x x ✓ x
EasyOrch. [53] x x N/A x x
FlowTags [12] ✓ x ✓ ✓ x
ChainGuard [14] ✓ x x ✓ x
NFVSense ✓ ✓ ✓ ✓ ✓

6 RELATEDWORK
This section reviews existing related works and highlights their
limitations.
NFV-based Security Solutions. Most of the existing solutions
(e.g., [6, 12, 14, 25, 51, 61]), to audit integrity breaches in NFV rely
on the provider-level data. FlowCloak [6] and vSFC [61] identi-
fies VNF chain violations (e.g., path non-compliance and packet
injection attacks). Similarly, SFC-checker [51] and ChainGuard [14],
audit the forwarding behavior of the VNF chains in a network ser-
vice. AuditBox [25] provides continuous assurance that packets
follow the formally specified policy-mandated path using formal
models. On the other hand, several works (e.g., [13, 26, 55]) focus
on the performance and functionality of NFV network services.
Unlike those works, NFVSense provides a tenant-based, two-stage
approach which does not fully rely on the provider.
Performance-based Identification Solutions. There exist sev-
eral performance-based identification solutions (e.g., [5, 20, 27]) for

virtualized environments. For instance, Koh et al. [20] study the
inter-VM interference performance characteristics by collecting
runtime performance measures. Whereas, Mei et al. [27] study the
network performance in a virtualized cloud environment while
varying the network I/O workloads. The authors in [5] analyze
the performance of virtual machines in an IaaS cloud environment
to infer the network topology. There are a few other works (e.g.,
[29, 39, 42]) that analyze VNFs to find performance issues in NFV.
Unlike those solutions, NFVSense, in Stage 1, uses the performance
characteristics to identify suspected integrity breaches.
NetworkTomography Solutions.There are several works (e.g., [4,
8, 19, 23]) that use network tomography for characterizing network
behavior. Among them, traceroute [23] and iperf [19] use the node-
to-node tomography approach to measure performance metrics
(e.g., delay, loss rate) of a specific link directly through sending
probing traffic from source to destination. On the other hand, us-
ing the end-to-end tomography approach, Chen et al. [8] calculate
unknown link variables and Arifler et al. [4] identify the congested
links. Similar to existing works, NFVSense uses network tomogra-
phy to collect performance characteristics data, but uniquely for
identifying integrity breaches in NFV.

Table 4 summarizes the comparison between the most recent
NFV security auditing works and NFVSense. Our comparison is
based on different properties that those solutions support. Specif-
ically, the detection coverage (i.e., run-time or stateful), the au-
diting capabilities (i.e., dynamic or static), the deployment level
(i.e., tenant-side or provider-side), the integrity breaches, and the
provider level accessibility (i.e., blackbox or whitebox).

7 CONCLUSION
With the widespread adoption of VNF chains for various network
services in NFV, their proper deployments on a third-party cloud
are very often questionable due to unintentional misconfigurations
or malicious attacks. As a result, it is essential to audit the integrity
of those VNF chains in NFV. In this paper, we proposed a new
tenant-based, two-stage solution, namely, NFVSense, that tackled
the existing challenges in auditing the integrity of VNF chains
hosted on third-party clouds. Specifically, its first stage identified
suspected integrity breaches from tenant-level side-channel infor-
mation (i.e., RTT) and its second stage verified those suspects by
identifying and anonymizing selected provider-level data for the
tenant to confirm actual breaches. We implemented and integrated
NFVSense into OpenStack/Tacker and conducted extensive experi-
ments to demonstrate its efficiency and accuracy. However, there
still exist a few limitations in NFVSense. For instance, currently,
NFVSense can only sense and verify integrity breaches after the fact.
Preventing breaches will be considered as future work. Another
future direction for NFVSense is to modify the design of the learn-
ing phase to ensure that NFVSense is enriched with real-time data
(e.g., online learning) that reflects the changing state of a running
network service.
Acknowledgment. We thank the reviewers for their valuable
comments. This work was supported by the Natural Sciences and
Engineering Research Council of Canada and Ericsson Canada
under the Industrial Research Chair in SDN/NFV Security and the
Canada Foundation for Innovation under JELF Project 38599.

89

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Momen Oqaily et al.

REFERENCES
[1] Jay Aikat, Aditya Akella, Jeffrey S Chase, Ari Juels, Michael K Reiter, Thomas

Ristenpart, Vyas Sekar, and Michael Swift. 2017. Rethinking security in the era
of cloud computing. IEEE S&P (2017).

[2] Ammar Latif, Ash Khamas, Sundeep Goswami, Vara Prasad Talari, and Dr Young
Jung. 2022. Telco Meets AWS Cloud: Deploying DISH’s 5G Network in AWS
Cloud. Available at: https://aws.amazon.com/blogs/industries/telco-meets-aws-
cloud-deploying-dishs-5g-network-in-aws-cloud/.

[3] Marco Anisetti, Claudio A Ardagna, Filippo Gaudenzi, Ernesto Damiani, Nicla
Diomede, and Patrizio Tufarolo. 2018. Moon cloud: a cloud platform for ICT
security governance. In 2018 IEEE (GLOBECOM). IEEE.

[4] Dogu Arifler, Gustavo de Veciana, and Brian L Evans. 2004. Network tomography
based on flow level measurements. In 2004 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Vol. 2. IEEE, ii–437.

[5] Dominic Battré, Natalia Frejnik, Siddhant Goel, Odej Kao, and Daniel Warneke.
2011. Inferring network Topologies in Infrastructure as a Service Cloud. In
CCGRID. IEEE.

[6] Kai Bu, Yutian Yang, Zixuan Guo, Yuanyuan Yang, Xing Li, and Shigeng Zhang.
2018. FlowCloak: Defeating middlebox-bypass attacks in software-defined net-
working. In IEEE INFOCOM. IEEE.

[7] Monchai Bunyakitanon, Aloizio Pereira da Silva, Xenofon Vasilakos, Reza Neja-
bati, and Dimitra Simeonidou. 2020. Auto-3P: An Autonomous VNF Performance
Prediction & Placement Framework based on machine learning. CN (2020).

[8] Aiyou Chen, Jin Cao, and Tian Bu. 2010. Network tomography: Identifiability
and Fourier domain estimation. IEEE TSP (2010).

[9] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and Lu-
dolf Erwin Meester. 2005. A Modern Introduction to Probability and Statistics:
Understanding why and how. Springer Science & Business Media.

[10] Nick Duffield. 2006. Network tomography of binary network performance char-
acteristics. IEEE TIT 52, 12 (2006), 5373–5388.

[11] ETSI. 2018. Network functions virtualisation (NFV) release 3; Management and
orchestration; Architecture enhancement for security management specification.

[12] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C
Mogul. 2014. Enforcing Network-Wide Policies in the Presence of Dynamic
Middlebox Actions using FlowTags. In USENIX NSDI.

[13] Seyed Kaveh Fayazbakhsh, Michael K Reiter, and Vyas Sekar. 2013. Verifiable
network function outsourcing: requirements, challenges, and roadmap. InMNFV.

[14] Johannes M Flittner, Matthias Scheuermann. 2017. ChainGuard: Controller-
independent verification of service function chaining in cloud computing. In
IEEE SDN.

[15] Jinho Hwang, K K_ Ramakrishnan, and Timothy Wood. 2015. NetVM: High per-
formance and flexible networking using virtualization on commodity platforms.
IEEE TNSM (2015).

[16] Fariha Tasmin Jaigirdar, Carsten Rudolph, and Chris Bain. 2021. Risk and com-
pliance in IoT-health data propagation: A security-aware provenance based
approach. In ICDH.

[17] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal, Gang Wang,
and Bimal Viswanath. 2020. Throwing darts in the dark? detecting bots with
limited data using neural data augmentation. In IEEE S&P.

[18] Peipei Jiang, QianWang, Muqi Huang, CongWang, Qi Li, Chao Shen, and Kui Ren.
2021. Building In-the-Cloud Network Functions: Security and Privacy Challenges.
Proc. IEEE 109, 12 (2021), 1888–1919. https://doi.org/10.1109/JPROC.2021.3127277

[19] Jon Dugan et al. 2021. active measurements of the maximum achievable band-
width on IP networks. Available at: https://iperf.fr/iperf-doc.php.

[20] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen, and
Calton Pu. 2007. An analysis of performance interference effects in virtual
environments. In ISPASS.

[21] Sudershan Lakshmanan Thirunavukkarasu. Master’s thesis 2020. Caught-in-
Translation: Detecting Cross-level Inconsistency Attacks in NFV.

[22] Zilong Lin, Yong Shi, and Zhi Xue. 2018. IDSGAN: Generative adversarial
networks for attack generation against intrusion detection. arXiv preprint
arXiv:1809.02077 (2018).

[23] Linux. 2021. Traceroute. Available at: t.ly/tq0k.
[24] LinuxPerf. 2021. Profiling with performance counters. Available at: t.ly/miMd.
[25] Guyue Liu, Hugo Sadok, Anne Kohlbrenner, Bryan Parno, Vyas Sekar, and Justine

Sherry. 2021. Don’t Yank My Chain: Auditable {NF} Service Chaining. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).

[26] Guido Marchetto, Riccardo Sisto, Jalolliddin Yusupov, and Adlen Ksentini. 2018.
Virtual network embedding with formal reachability assurance. In IEEE CNSM.

[27] Yiduo Mei, Ling Liu, Xing Pu, Sankaran Sivathanu, and Xiaoshe Dong. 2011.
Performance analysis of network I/O workloads in virtualized data centers. IEEE
TSC 6, 1 (2011), 48–63.

[28] Vaishnavi Moorthy, Revathi Venkataraman, and T Rama Rao. 2020. Security and
privacy attacks during data communication in software defined mobile clouds.
Computer Communications (2020).

[29] Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru. 2016. NFVPerf: Online
performance monitoring and bottleneck detection for NFV. In NFV-SDN.

[30] Netfilter Org. 2021. IPTables. Available at: https://www.netfilter.org/.
[31] Numpy. 2021. The fundamental package for scientific computing with Python.

https: https://scikit-learn.org/stable/.
[32] OpenStack. 2021. OpenStack. Available at: https://www.openstack.org/.
[33] OpenStack. 2021. Tacker. Available at: t.ly/8dh7.
[34] OPNFV Group. 2021. Available at: https://www.opnfv.org/.
[35] OProfile. 2022. Linux system profiler. Available at: t.ly/rqN0.
[36] Alaa Oqaily, LT Sudershan, Yosr Jarraya, SuryadiptaMajumdar, Mengyuan Zhang,

Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. 2020. NFVGuard: Verify-
ing the Security of Multilevel (NFV) Stack. In CloudCom.

[37] Momen Oqaily, Yosr Jarraya, Mengyuan Zhang, Lingyu Wang, Makan Pourzandi,
and Mourad Debbabi. 2019. iCAT: An Interactive Customizable Anonymization
Tool. ESORICS, Springer, 658–680.

[38] OSM Group. 2021. Open Source MANO. Available at: https://osm.etsi.org/.
[39] Manuel Peuster and Holger Karl. 2016. Understand your chains: Towards perfor-

mance profile-based network service management. In EWSDN.
[40] Manuel Peuster and Holger Karl. 2017. Profile your chains, not functions: Auto-

mated network service profiling in devops environments. In NFV-SDN.
[41] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-

jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. 2015. The
design and implementation of open vswitch. In NSDI. USENIX.

[42] Raphael Vicente Rosa, Christian Esteve Rothenberg, and Robert Szabo. 2015.
VBaaS: VNF benchmark-as-a-service. In EWSDN.

[43] Scikit-learn. 2021. Machine Learning in Python. https: https://numpy.org/.
[44] Mustafizur R Shahid, Gregory Blanc, Houda Jmila, Zonghua Zhang, and Hervé

Debar. 2020. Generative Deep Learning for Internet of Things Network Traffic
Generation. In PRDC.

[45] Snort Org. 2021. snort. Available at: https://www.snort.org/.
[46] Soumith Chintala, Emily Denton, Martin Arjovsky, Michael Mathieu. 2021.

How to Train a GAN? Tips and tricks to make GANs work. Available at:
https://github.com/soumith/ganhacks.

[47] Tcpdump. 2021. Tcpdump. Available at:http://www.tcpdump.org/index.html.
[48] Nguyen Canh Thang and Minho Park. 2019. Detecting compromised switches

and middlebox-bypass attacks in service function chaining. In ITNAC. IEEE.
[49] Sudershan Lakshmanan Thirunavukkarasu, Mengyuan Zhang, Alaa Oqaily,

Gagandeep Singh Chawla, Lingyu Wang, Makan Pourzandi, and Mourad Deb-
babi. 2019. Modeling NFV deployment to identify the cross-level inconsistency
vulnerabilities. In CloudCom. IEEE.

[50] Ke Tian, Steve TK Jan, Hang Hu, Danfeng Yao, and Gang Wang. 2018. Needle in
a haystack: Tracking down elite phishing domains in the wild. In IMC. 429–442.

[51] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee, Jeongkeun Lee, and
Joon-Myung Kang. 2016. Sfc-checker: Checking the correct forwarding behavior
of service function chaining. In NFV-SDN.

[52] Ubuntu. 2021. Cloud Images. Available at: https://cloud-images.ubuntu.com/.
[53] Fulvio Valenza, Serena Spinoso, and Riccardo Sisto. 2019. Formally specifying

and checking policies and anomalies in service function chaining. Journal of
Network and Computer Applications 146 (2019), 102419.

[54] Steven Van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet De-
meester. 2019. Profile-based resource allocation for virtualized network functions.
IEEE TNSM 16, 4 (2019), 1374–1388.

[55] Steven Van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet
Demeester. 2020. VNF Performance Modelling: From stand-alone to chained
topologies. CN 181 (2020).

[56] VMware. 2020. VMware Expands Its VMware Ready for Telco Cloud Program to
Accelerate the Deployment of 5G Services. Available at:t.ly/BIIW.

[57] Denis Volkhonskiy, Ivan Nazarov, and Evgeny Burnaev. 2020. Steganographic
generative adversarial networks. In Twelfth international conference on machine
vision (ICMV 2019), Vol. 11433. SPIE, 991–1005.

[58] HanWang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, and HoumanHomay-
oun. 2020. Hybrid-shield: Accurate and efficient cross-layer countermeasure for
run-time detection and mitigation of cache-based side-channel attacks. In CCD.

[59] Si Yu, Gui Xiaolin, Lin Jiancai, Zhang Xuejun, and Wang Junfei. 2013. Detecting
vms co-residency in cloud: Using cache-based side channel attacks. Elektronika
(2013).

[60] Xiaoli Zhang, Qi Li, Jianping Wu, and Jiahai Yang. 2017. Generic and agile service
function chain verification on cloud. In IWQoS.

[61] Xiaoli Zhang, Qi Li, Zeyu Zhang, Jianping Wu, and Jiahai Yang. 2020. VSFC:
Generic and agile verification of service function chains in the cloud. IEEE/ACM
ToN (2020).

[62] Ying Zhang, Wenfei Wu, Sujata Banerjee, Joon-Myung Kang, and Mario A
Sanchez. 2017. SLA-verifier: Stateful and quantitative verification for service
chaining. In INFOCOM.

90

https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://doi.org/10.1109/JPROC.2021.3127277
https://iperf.fr/iperf-doc.php
 t.ly/tq0k
t.ly/miMd
t.ly/8dh7
t.ly/rqN0
t.ly/BIIW

	Abstract
	1 Introduction
	2 Preliminaries
	3 NFVSense
	3.1 Overview
	3.2 Stage 1: Identifying Suspected Breaches
	3.3 Stage 2: Selected Data Verification

	4 Implementation and Experiments
	4.1 Implementation
	4.2 Experimental Environment
	4.3 Experimental Results

	5 Discussions
	6 Related Work
	7 Conclusion
	References

