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Abstract—Internet of Thing (IoT) devices are being widely
used in smart homes and organizations. An IoT device has some
intended purposes, but may also have hidden functionalities.
Typically, the device is installed in a home or an organization
and the network traffic associated with the device is captured and
analyzed to infer high-level functionality to the extent possible.
However, such analysis is dynamic in nature, and requires the
installation of the device and access to network data which is often
hard to get for privacy and confidentiality reasons. We propose an
alternative static approach which can infer the functionality of a
device from vendor materials using Natural Language Processing
(NLP) techniques. Information about IoT device functionality
can be used in various applications, one of which is ensuring
security in a smart home. We demonstrate how security policies
associated with device functionality in a smart home can be
formally represented using the NIST Next Generation Access
Control (NGAC) model and automatically analyzed using Alloy,
which is a formal verification tool. This will provide assurance to
the consumer that these devices will be compliant to the home or
organizational policy even before they have been purchased.

Index Terms—IoT, Smart Home, Device Functionality, NLP

I. INTRODUCTION

We are moving towards a smart and connnected world, which
is estimated to have 55.7 billion connected devices by 2025,
out of which 75% will be IoT devices [1]. IoT devices contain
many sensors and actuators and are able to perform multiple
functionalities. For example, Nest Protect [2] whose primary
functionality is to detect smoke also contains a microphone,
rendering it to audio capture functionality. Consumers may
install Nest Protect in their bedroom for smoke detection
purpose, but Nest Protect’s functionality of audio capture puts
their security and privacy at risk. Thus, there is a need to
understand the latent functionalities of IoT devices and their
impact on security and privacy.

The most widely prevalent approaches [3]–[11] for obtain-
ing device functionalities fall under the category of dynamic
approaches which profile device behaviors by installing or
simulating IoT devices and observing their network behaviors
and inferring their functionalities. Often times, the network
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traffic is encrypted; consequently, such approaches are inac-
curate and report high false positive and false negative rates.
Moreover, deriving high-level functionality from low-level net-
work data is non-trivial. Such approaches require set-up effort
and time for capturing device information. If such set-up is
done in real-world settings, device data may violate security
or privacy concerns of consumers. One static approach [12]
profiles device functionalities by analyzing vendor materials of
IoT devices. This approach also suffers from accuracy issues,
as they mainly rely on identification of device functionalities
without considering the contextual information of words. For
instance, the same word such as ‘light’ can have multiple
meanings, and so it is hard to deduce whether the corresponding
device can illuminate a room.

In this paper, we propose a static analysis approach. We
associate a set of keywords with generic devices based on
their functionality, check for the presence of these keywords
and their context in the vendor materials using NLP techniques
(e.g., [13], [14]), deduce the presence of relevant transducers
in the IoT device, and use this knowledge to obtain the device
functionalities. The use of contextual information in the vendor
material reduces the number of false positives. We evaluate
our approach on IoT products from different vendors, including
Arlo and Samsung, and report encouraging results.

We further demonstrate how the knowledge of device func-
tionalities can improve security and privacy in a smart home.
Towards this end, we formulate device placement policies for
the smart home IoT environment using an attribute-based access
control model where access to a resource is contingent on the
properties of the subject, the environment, and the resources.
We use the NIST Next Generation Access Control (NGAC)
model [15] because of its ability to model dynamic policies,
where constraints can change while the policy is deployed.
Also, policies may be complex and the constraints may conflict
with each other. We need to analyze and demonstrate policy
consistency and conformance. Manual analysis is tedious and
error-prone. Towards this end, we demonstrate how to translate
the NGAC policy to Alloy [16], which has tool support for
automated policy verification.

We provide a framework that allows for extracting device



functionality and checking conformance of device placement
even before device purchase. Our contributions include the
following. (i) We provide a context-aware approach for extract-
ing IoT device functionalities from publicly-available resources
using NLP. (ii) We illustrate how IoT device functionalities can
be used for enhancing security. We show how our extracted
functionalities and associated policies can be represented us-
ing standardized access control model (NGAC) and then be
analyzed using formal verification methods (Alloy). (iii) We
implement our proposed approach in the context of smart
homes with diverse devices (Nest Camera, Arlo Ultra Cam,
Samsung Smart Cam) from various vendors (Arlo, Nest and
Samsung), and evaluate its efficiency, accuracy, and scalability,
to demonstrate the feasibility of our approach.

II. RELATED WORK

Dynamic Approach. [3]–[9] perform fingerprinting of IoT
device behavior by analyzing network traffic. [3]–[5] use ma-
chine learning model trained on network traffic according to
their service (e.g., DNS, HTTP) and the semantic behaviors of
devices (e.g., detected motion) to automatically discover and
profile device behaviors. [7]–[9] use unsupervised learning to
build models for individual devices based on captured network
traffic and automatically detect device identity. Hamza et al.
[17]–[19] use Manufacturer Usage Description (MUD) profiles
to fingerprint and detect device functionalities. These works
detect network level device functionality based on network
traffic. Particularly, Hamza et al. [17] develop a tool to detect
and verify MUD profile based on network traffic, and device
classification has been performed based on observed network
traffic as well as generated MUD signature. It converts MUD
policies to flow rules and uses those flow rules to detect an
intrusion. [19] uses security testing methodologies to augment
the MUD profile and increases its expressiveness by consid-
ering additional security aspects beyond just network traffic.
MUD based solutions rely on MUD profiles and on vendors to
provide complete and correct MUD profiles for IoT devices. For
both ML and MUD based approaches device access is required
and the device must be connected and be operational. Although
these approaches can detect network-level behavior, inferring
high level operation is error-prone because of the encrypted
payload.
Static Approach. Our previous work [12] implements a tech-
nique of extracting IoT device functionalities based on design
specifications from vendor materials. We use key term matching
to detect transducers from vendor materials and map those
transducers to their capabilities for identifying device function-
alities. However, this work ignores the usage context of the key
terms and hence results in high false positive rates.
Context-based approaches for IoT. [20] makes an effort
towards understanding the context of the data generated by
IoT sensors and actuators and to provide personalized recom-
mendations to the users based on the captured data. Similarly,
[21] exploits the heterogeneous contextual information (e.g.,
daily activities) that are captured from IoT devices. Then, those
contextual information is leveraged to be used in personalizing

care management process especially for elderly people. Our
work aims at a different objective where we intend to extract
device functionalities for consumer security without using any
captured data.

III. PRELIMINARIES

A. Vendor Material Description

This work considers various publicly available vendor mate-
rials including product webpages, technical specifications, and
setup videos, for the purpose of extracting device functional-
ities. Product webpages (e.g., [22]) are the official marketing
pages briefly describing a device, including its basic features.
Technical specification pages (e.g., [23]) provide device spec-
ifications, including its hardware configurations. Setup videos
(e.g., [24]) elaborate on how to install IoT devices including
useful information about device functionalities. During our
analysis, we experience on average 32-page long specification
documents and 4:48 minute long setup videos.

B. Challenges of Context-Aware IoT Device Functionality Ex-
traction

The challenges in extracting IoT device functionalities from
vendor materials are as follows.

• Understanding multimedia contents. In addition to text,
device vendors often use multimedia technology, such as
picture, audio, and video. Thus, text processing alone
becomes insufficient for extracting device functionalities.
Automatically encoding these multimedia elements poses
additional difficulty.

• Minimal mention of key terms. In many cases, key terms
(i.e., that might indicate the presence of a transducer or
functionality) are mentioned very few times in vendor
materials with brief information about them. Therefore,
obtaining contextual information about those key terms
becomes challenging.

• Ambiguous use of key terms. The key terms are used
in different ways by the various vendors. This makes it
hard to identify the context and infer the presence of a
functionality.

• Lack of standardized template. Each vendor follows differ-
ent conventions in arranging their materials. Furthermore,
different materials of the same vendor follow different
formats. Also, vendors craft expressions and styles, and
include non-standard terms and phrasing unique to only
their line of products. The lack of standard format for
vendors to describe generic features or hardware makes
device functionality extraction across different vendors
challenging.

C. Intuition behind Context-Aware Device Functionality Ex-
traction

We initially conduct a feasibility study to demonstrate the
effect of context in inferring device functionality. For example,
the term temperature is used in different contexts, such as
for measuring device temperature, for referring to operational
temperature, and for sensing/adjusting a room temperature.



Thus, we need to understand the context before inferring device
functionalities. In this feasibility study, we explore two major
NLP techniques, N-gram and BERT.

N-gram [13]. N-gram is an NLP technique to predict the
occurrence of a word based on its previous N words. [12]
extracts the device specification from various vendor materials
(overview page, technical specification page, and manuals). Af-
ter extracting the device specification, then irrelevant contents
(e.g., stop words, site navigation link, copyright information)
are pruned to get the overall corpus for a specific device.
We operate on this generated corpus to apply N-gram and
detect local context for a specific term. Once we have a corpus
for a specific device, we convert the corpus to trigram. We
are interested in certain transducers (for example, temperature
sensor) and the goal is to detect the contexts associated with
the key terms of those transducers in the extracted corpus.

For example, in the Nest Thermostat [25] corpus, we
have the phrase: “nest temperature sensor room like”.
The trigrams generated from this phrase are <nest
temperature sensor>, <temperature sensor
room>, and <sensor room like>. From the Arlo Pro
3 Floodlight corpus, the phrase “5 hrs operate temperature”
generates the following trigrams: <5 hrs operate>
and <hrs operate temperature>. By analyzing, the
preceding and following words in trigram for both Nest
thermostat and Arlo Video Doorbell, we can see that the word
temperature in Nest thermostat has the context of sensing
temperature whereas the word temperature in Arlo video
doorbell has the context of operational environment. We utilize
this observation in our methodology in Section IV.

BERT [14]. BERT (Bidirectional Encoder Representation From
Transformers) is a transformer-based language representation
model and learns information from both sides of a word to
learn the context of a specific word [26]. In this work, BERT
is used to detect contextual semantics associated with key terms
in vendor materials.

For example, in the following two sentences using the term
temperature, BERT uses bidirectionality to understand their
contextual meaning: (i) “check if the arlo app is warning that
your doorbell temperature is too high”, and (ii) “the temperature
they sense is warmer or cooler than homeowner’s feel”. In
(i), we factor the context of the words mentioned before
temperature to understand whether the current context is of
type operating or notifying. In (ii), to identify the context in
which term temperature is being mentioned, we read the words
following it which clearly indicates the context of ‘sensing’.
In our methodology (in Section IV), we leverage this strength
of BERT to accurately extract functionalities using contextual
meaning of a term.

D. Threat Model

This work is designed in the context of smart home, a
growing IoT application. One focus of this work is to extract
device functionalities using contextual information from vendor
materials. The other focus is to demonstrate how the extracted

functionalities are useful for security and privacy policies for
consumers. The device functionalities can be used in access
control scenario to verify device behavior according to required
policy as well as to detect and prevent attacks that makes use
of the sensors or actuators. In this work, we do not consider
possible threat stemming from device misbehavior/malfunction
and network attack that does not involve device transducers.
This work does not rely on device access as well as network
data. We enumerate device functionalities based on the vendor
materials that are publicly and readily accessible. Missing
information in those materials may affect the robustness of our
approach.

IV. PROPOSED FRAMEWORK

This section presents our proposed framework as follows.

A. Overview

Figure 1 displays a general overview of our proposed frame-
work. Our framework can be categorized into four phases:
(i) data collection and pre-processing, (ii) contextual embedding
generation, (iii) clustering, and (iv) prediction. In the data
collection and pre-processing phase, we first collect entire
corpus of texts from vendor materials (e.g., overview page,
technical specification page, manuals and setup videos) and
then extract both key terms (i.e., the words that might be related
to transducers) and their contextual information by leveraging
NLP techniques. In the contextual embedding generation phase,
we generate contextual representation of key terms based on the
context of an entire sentence in which the terms are present.
In the clustering phase, we cluster sentences with similar
context together and also annotate those clusters. Finally, in
the prediction phase, we predict if any sentences from a new
device are clustered to the annotated cluster to identify the
functionalities of that device. The output (i.e., device function-
alities) of our framework can be used for different security
applications, such as access control, auditing. In this paper,
we obtain functionalities of several smart home devices from
different vendors, and utilize those functionalities to specify and
verify policies for consumers. Each phase of this framework is
explained below.

B. Data Collection and Pre-processing

Data Collection. In this work, we extract all the text from
various vendor materials (i.e., technical specifications, product
overview pages, manuals or user guides, and setup videos).
We leverage existing tools (e.g., beautifulsoup) to extract texts
from the webpage (overview page and technical specification
page), and manuals or user guide. We also extract texts from
setup videos for a device by using Google Web Speech API
[27]. Once all texts are extracted, we remove stop words and
punctuation from those sentences as well as lemmatize our
corpus so that we can leverage it further for understanding
transducers and device functionalities.

Pre-processing. To extract the transducer information from the
vendor materials, we first build an ontology, and then compare



Fig. 1. Our proposed methodology for the context-aware IoT device functionality extraction

the obtained corpus and our ontology. Note that the ground truth
is established based on this ontology, which is manually built
from the analysis of vendor materials. To build an ontology of
transducers (sensors and actuators), we perform a set matching
algorithm between the key terms and words collected from
corpus. Specifically, key terms are divided into two categories:
indicative and related. The indicative terms are sufficient to
conclude the presence of a transducer and related functionality
in a device. The related terms are also about transducers but
are rather vague and insufficient in reaching to a conclusion
about the presence of transducer and related functionality. To
match the obtained corpus and our ontology, we use one of the
four algorithms as follows.

• Device Cognisant Key Term Set Matching (dcKTSM): In
this algorithm, we select the most relevant key term set
based on the presence of indicative terms. We extract
matching key terms from our ontology based on the input
corpus. This results in a subset of indicative terms for a
candidate device. We then perform reverse mapping from
these indicative terms to the transducer they refer to.

• Device Cognisant Full Key Term Set Matching (dcfKTSM):
This algorithm is similar to dcKTSM. The only difference
is that we consider both indicative and related terms to
select most relevant key terms rather than just indicative
terms as in dcKTSM.

• Indicative Key Term Set Matching (iKTSM): This algo-
rithm directly considers corpus on all indicative terms from
our ontology. The reverse mapping process from indicative
term to transducer remains the same as above.

• All Key Term Set Matching (aKTSM): This algorithm is
the most unguided algorithm. the iKTSM and aKTSM
algorithms are very similar, except that in aKTSM, we
evaluate corpus on both indicative and related terms as
opposed to using only indicative terms in iKTSM.

However, solely applying any of the above algorithms on our
corpus to elaborate device functionalities results in high false
positive/negative rates (i.e., wrongly identifying the presence
or absence of a functionality). This is mainly because of the
naivety in our approach where we are directly mapping device
to their functionalities based on the presence of indicative and
related terms specific to a certain transducer in our collected
corpus. For example, based on key term set matching algo-
rithms, the presence of sentence “Check if the Arlo app is
warning that your doorbell temperature is too high” would

indicate the presence of temperature sensor in Arlo Video
Doorbell. However, in reality, Arlo Doorbell does not contain
a temperature sensor. Therefore, in this work, we should also
consider the context in the above sentence so that we can
understand the appropriate intent (e.g., unfavorable environment
being generated for a device) of the term temperature in
that sentence. Therefore, to prune the device functionalities
obtained from the key term set matching algorithms, we enlist
transducers that can be represented in different contexts by
vendors in their materials. For the rest of the paper, we will use
temperature sensor, light sensor and lock (in eight Smart Home
products: Nest Camera, Nest Protect, Nest Thermostat, Nest x
Yale Lock, Arlo Video Doorbell, Arlo Pro 3 Floodlight, and
Samsung Smart Cam [2], [23], [25], [28]–[31]) as examples to
present our context-aware approach.

C. Contextual Embedding Generation

This phase generates the contextual representation for key
terms. As shown in Section III, we first build our intuition
of context-aware extraction by conducting preliminary studies
using both N-gram and BERT. Based on the outcome of that
study, we conclude that even though N-gram (where N = 3)
significantly improves the false positive rates over the basic key
term set matching approach [12], this is an exhaustive process
with low confidence. Therefore, we choose BERT to generate
the contextual embedding for key terms as follows.

We extract all the sentences from vendor materials with key
terms from the entire corpus on eight devices (as mentioned
earlier). We then divide six devices for training purposes (where
we cluster sentences with similar meaning to a key term
together) and two devices for testing purposes (where we check
if we could correctly predict the sentence from a new device
and identify its functionalities based on the functionalities of
the predicted cluster). We evaluate on all combinations (8C2)
of training and testing device, which totals to 28 combinations
in Section VI. We then generate a BERT token for the key
terms (e.g., temperature and lock) based on the context of the
entire sentence. For example, the BERT token for the term
temperature in the sentence “Operating temperature -20 to 60
degree Celsius” and sentence “You adjust the temperature from
your phone so they’ll be cozy” have different representations
due to their different contexts. To generate the BERT token, we
use Hianxao’s BERT as a service tool [32]. We use the BERT



model with 12 layers, 768 hidden units, and 12 attention heads
for generating tokens.

D. Clustering

This phase clusters related token (that are generated by
BERT) together by leveraging an affinity propagation algo-
rithm, which is a graph-based clustering algorithm similar to K-
Means that cluster the related data points together. In K-means,
the value of ‘K’ (number of clusters) must be pre-specified
whereas affinity propagation algorithm can automatically detect
an optimal number of clusters [33]. After applying affinity
propagation to BERT tokens, the contextually similar tokens
are clustered together.

TABLE I
CLUSTER AFTER APPLYING AFFINITY PROPAGATION TO BERT TOKENS

Cluster 1
Now turn up the temperature and get comfortable
Put a Nest Temperature Sensor in any room, like the baby’s room,
and you can tell Nest to make that room a priority (sold separately)
The Nest Thermostat can use sensors and your phone’s location
to check if you’ve left, then sets itself to an Eco Temperature to
save energy
You adjust the temperature from your phone so they’ll be cozy
You may also be into Google Nest Mini From Google Nest Protect
From Google Nest Temperature Sensor
The temperature they sense is warmer or cooler than homeowners
feel
In a room that’s used often, so Nest can read the right temperature
and the homeowner can easily reach it
If your existing chime doesn’t ring when someone presses your
Video Doorbell, your Video Doorbell or Power Kit might not be
wired correctly, or the temperature of your Arlo Video Doorbell
might be too high
Check if the Arlo app is warning that your doorbell temperature
is too high

Table I and Table II display the subsets of cluster after
successfully implementing affinity propagation on BERT tokens
obtained from the term temperature. In each cluster, the term
temperature appearing in different rows are used in very similar
contexts. The sentences in Cluster 1 (in Table I) have a
notion of being able to sense/adjust temperature. Similarly, the
sentences in Cluster 2 (in Table II) are providing information
about suitable operating temperature for the device. These two
clusters demonstrate that BERT and Affinity propagation can
successfully cluster sentences based on the contexts. After

TABLE II
CLUSTER AFTER APPLYING AFFINITY PROPAGATION TO BERT TOKENS

Cluster 2
Operating Temperature 40ºF (4 ºC) to 100ºF (38 ºC)
Operating Temperature 32°–104°F (0°–40°C)
Operating Temperature –22° to 140°F (–30° to 60°C)
Battery temperature range: 14° to 131°F (–10° to 55°C)
Operating temperature 32° to 104°F (0° to 40°C)
Operating Temperature (F) 0°C +40°C (+32°F +104°F)
Operating Temperature -20 to 60 degree Celsius
Operating Temperature -20 to 45 degree Celsius
Operating Temperature -20 to 45 degree Celsius
The operating temperature or voltage is too low

clustering the related sentences, we manually annotate the
cluster which refers to device functionalities. For example,
we are interested in Table I, because this cluster is about
sensing/adjusting temperature and we are interested in deriving
device functionality of sensing temperature. We are not inter-
ested in Table II which is about favorable operating temperature
for a device.

E. Prediction

This phase predicts the functionalities of a new device. The
previous phases remain the same for new devices. After context
generation, we predict a suitable cluster for the sentences with
key terms. If a sentence is predicted to fall under an annotated
cluster, then we conclude the presence of a functionality in the
given device, because the annotated cluster and current sentence
both are explaining device functionality using similar seman-
tics. Otherwise, we conclude the absence of that functionality.
Our framework provides more precise information about device
functionality by filtering based on the contextual meaning of
transducers. An excerpt of device functionality output extracted
by our framework is displayed in Table III. After extracting
the device functionalities, we can use them for various security
applications, e.g., access control and auditing. One such use
case is described below.

TABLE III
EXTRACTION OF DEVICE FUNCTIONALITY FROM OUR APPROACH

Device Functionality/Device Nest Protect Nest Thermostat Arlo Ultra Samsung Smart Cam
Capture Image/Video • •

Detect Motion • • • •
Produce Infrared Light • •

Detect Light • • • •
Produce Light • •
Capture Sound • • •
Produce Sound • • •
Detect Smoke •

Detect CO •
Measure Temperature • •

Detect Contact
Lock and Unlock door

Control Thermostat •

V. USE CASE: APPLICATION TO CONSUMER SECURITY

Armed with the knowledge of device functionality, we now
demonstrate how this knowledge can be used to protect con-
sumer security. We demonstrate this in the context of a smart
home application.

A. Security Policy Specification

A home has various rooms and areas, each of which is
associated with a level of privacy. The owner may have a policy
that provides constraints on the placement of devices in a home.
The capabilities of a device and the sensitivity of a location
will determine if the device can be placed in that location.
One such policy involving three devices and a home having
private areas is modeled using NIST Next Generation Access
Control (NGAC) Model and illustrated in Figure 2. NGAC is
useful for modeling policies where access to a resource depends
on the properties (attributes) of the subject requesting access,
the resources, and the environment. The policies are expressed
in terms of relations over the attributes of the subjects, the
resources, and the environment.



For our given example demonstrated in Figure 2, the policies
express constraints on the placement of devices. The subjects
in this case are devices, and the resources that need protection
are the various locations in the house. Nest Cam indoor and
Nest Protect are the two devices, and the various locations are
Meeting Room, Bathroom, Bedroom, Front Porch all of which
are shown using dotted boxes. The attributes of the devices
correspond to their functionalities. The attributes of the location
correspond to their sensitivities. The attributes are shown using
solid boxes. The solid arrows from subjects/objects to attributes
show the assignment relation which demonstrates possession
of that attribute. The solid arrow between solid boxes show
containment relation. For example, a device possessing Image
Capture functionality also has Visual Capture functionality.
Similarly, Private Areas in a home are a part of All Locations.
The labeled dashed lines between subject attributes and re-
source attributes indicate allowance (labeled ‘A’) or prohibition
(labeled ‘X’). For example, Audio Capture is prohibited in
Meeting Room whereas Visual Capture is allowed in it. The
default policy allows all, as indicated by the dashed line labeled
‘A’ from All Functionalities to All Locations.

{A}All Functionalities Smart Home
(All Locations)

{A}
Visual Capture

Bedroom

Front Porch

Bathroom

XAudio Capture

Video CaptureImage Capture

Private Areas

Meeting Room

Nest Cam
Indoor

Nest Protect

Fig. 2. Privacy policy of a homeowner

B. Security Policy Verification

In large scale applications, the number of devices, the number
of functionalities, and the number of constraints may be large.
It is important to ensure that the placement of devices conform
to the policies and also that policies do not conflict with each
other. Consequently, the specification must be analyzed. Manual
analysis is tedious and error-prone. NGAC framework does
not provide any tool support for automated analysis. Towards
this end, we use Alloy [16] to formally analyze the policies
expressed by our NGAC model. Alloy is based on first-order
logic and has tool support for automated analysis. The key com-
ponents of Alloy are signatures, facts, and assertions. Signatures
are basic specifications for a type of object, similar to classes in
an object oriented programming language. Signatures contain
fields that represent relationships to other signatures. Facts and
assertions contain constraints in first-order logic related to the
signatures of a model. Facts specify constraints that always hold
true for any instance of the model, while assertions specify
constraints that are assumed to follow from the constraints
defined by the facts of the model. Assertions must therefore
be “checked” to determine if they hold for instances of the

model. The Alloy Analyzer can be used to enumerate many
instances of a model and check these assertions by converting
them to boolean reasoning satisfiability problems. Assertions
are verified to a certain depth of scope, meaning all instances
of the model for a certain number of each signature type.
Within that scope, if any instance invalidates any constraint
of the assertion that is being checked, it is presented as a
counterexample and indicates that the assertion is invalid.

1) Generalized Model: Our NGAC model is created in Alloy
as a number of signatures and facts that constrain the structures
and their relationships. EnvGroup signature represents the en-
vironmental attribute groups of the policy, and the FunGroup
signature represents the functionality attribute groups of the
policy.

Listing 1. General model group signatures
sig EnvGroup { parents: set EnvGroup }
sig FunGroup {

parents: set FunGroup
allows: set EnvGroup
prohibitions: set EnvGroup }

Both of these signatures hold references to the hierarchical
structures to which they belong by way of the parents field,
a set which refers to the immediate parents of the particular
group in the hierarchy. The relations between functionality
and environmental groups that specify which functionalities
are allowed or prohibited in which environmental group(s)
are captured in the allows and prohibitions fields of each
FunGroup. There are additionally two specialized signatures
for both environmental and functionality groups, which act as
the root and leaf members of the policy. The AllEnv and AllFun
signatures, shown in Listing 2, exist as the roots in all policy
instances. Incidentally, the allows and prohibitions fields of the
AllFun group are used to specify the default policy, depending
on which field contains the AllEnv group. For the policy leaves,
we use the Device and Location signatures, also shown in
Listing 2. These are functionally the same as the main signature
that they extend, with the exception of the additional location
field within the Device signature, which can be used to specify
the device’s location in an operating environment.

Listing 2. Root and leaf policy structures
one sig AllEnv extends EnvGroup { } { no parents }
one sig AllFun extends FunGroup { } {

no parents
allows = AllEnv
prohibitions = none

}
sig Location extends EnvGroup { } { }
sig Device extends FunGroup {

location: lone Location
} { }

The most significant fact shown in Listing 3, specifies that
a device may not be in a location that is prohibited by way of
the relationships between the device’s functionality ancestors
and the location’s environmental ancestors, unless there is a
corresponding allow.

Listing 3. Fact that constrains where a device may be located
fact {



all d: Device, l: Location | (l in d.prohibitions) => (
l not in d.location)

all d: Device, l: Location |
let prohintersect =

(l.*parents & d.*parents.prohibitions) |
let allowintersect =

(l.*parents & d.*parents.allows) |
((allowintersect = none) and

(prohintersect != none)) => l not in d.location
}

2) Instantiating and Validating Policies: We now demon-
strate how to translate the exclusive policy depicted in Figure 2
to Alloy syntax. Each environmental group, functionality group,
device, and location is represented as a signature which extends
the EnvGroup, FunGroup, Device, and Location signatures,
respectively. Listing 4 provides the Alloy representation for
the PrivateAreas, Bedroom, and VisualCapture members of the
policy, and the default policy.

Listing 4. Exclusive policy members translated to Alloy syntax
// Environmental group
one sig PrivateAreas extends EnvGroup { } { parents =

AllEnv }
// Location
one sig Bedroom extends Location { } { parents =

PrivateAreas }
// Functionality group
one sig VisualCapture extends FunGroup { } {

parents = AllFun
allows = MeetingRoom
prohibitions = none

}
// Default policy
fact defaultpolicy {
AllFun.allows = AllEnv
AllFun.prohibitions = none

}

The Alloy assertion, shown in Listing 5, ensures that the
instantiated policy conforms to the security goals specified
by the user. The assertion specifies that no device that is
related to the AudioCapture functionality group shall be in the
MeetingRoom location.

Listing 5. Example policy assertion
assert policyassertion {
all d: Device | (AudioCapture in d.ˆparents) =>
MeetingRoom not in d.location

}

When the Alloy Analyzer checks this assertion, it will verify
all policy instances within a scope of at most 1 of each signature
type against the assertion to determine if it is valid. Because
the policy specifies an explicit number of signatures to be
considered, there is no need to consider a scope beyond 1;
every valid configuration will be iterated over for verification.

3) Conflicts and Counterexamples: When the example pol-
icy assertion above is checked, Alloy Analyzer produces coun-
terexamples that represent configurations that are in conflict
with the constraints of the policy assertion, such as one that is
depicted in Figure 3. In this configuration that Alloy automati-
cally instantiated, the NestCam is located in the MeetingRoom,
despite the fact that the policy assertion specifies that no device
belonging to the AudioCapture functionality group should be
located in the MeetingRoom.

Fig. 3. A counterexample enumerated by Alloy Analyzer that shows a
conflicting configuration for an exclusive policy

The policy conflict shown in this counterexample is the fact
that the NestCam has AudioCapture functionality, yet is located
in the MeetingRoom. However, a direct conflict exists in this
configuration, since the NestCam is also explicitly allowed
in the MeetingRoom. Using assertions such counterexamples
can be enumerated. Once all location fields of all devices
are specified, only one configuration can exist, and the same
policy assertion can be checked to ensure that the chosen
configuration does not conflict with the constraints of the policy.
For example, if the NestProtect were specified to be located in
the Bedroom, and the NestCam were specified to be located on
the FrontPorch, then the assertion would be evaluated without
any counterexamples.

VI. EXPERIMENTAL RESULTS

A. Extraction Efficiency

Figure 4 portrays our results for incorrect transducer iden-
tification for Arlo and Samsung devices with the various key
term set matching approaches, with and without using the N-
gram approach. In Figure 4a and Figure 4b, we see that Arlo
video doorbell does not show any incorrect identification of
transducer on dcKTSM and dcfKTSM with N-gram approach
as opposed to when only the algorithms were applied without
the N-gram approach. Similarly, the false-positive rate also
decreases for the Arlo video doorbell with iKTSM when N-
gram is applied. Also, we can see a slight improvement in false-
positive rate for Samsung Smart Cam with aKTSM approach
on when N-gram is applied as opposed to when N-gram is not
applied. This preliminary study concludes that detecting the
true context in which the transducer is mentioned in vendor
material helps to robustly enumerate the transducer and map
them to their respective functionalities.

Figure 5 compares result of aKTSM augmented with BERT
for contextual embedding generation and Affinity propagation
for clustering with that of aKTSM without BERT and Affinity
propagation. The initial algorithms without BERT and Affinity
propagation give false positive rates of 37.5% and 58.334%
respectively for Nest Cam Indoor and Samsung Smart Cam
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Fig. 4. For Arlo (fig. 4a and fig. 4b), and Samsung(fig. 4c and fig. 4d) devices, grouped by vendor and for each vendor grouped by KTSM algorithm the
proportion of matching transducers that are incorrectly identified with and without N-gram
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Fig. 5. Incorrect transducer by device for Nest Cam Indoor and Samsung Smart
Cam Video Surveillance with aKTSM w/o BERT and Affinity Propagation and
aKTSM augmented with BERT and Affinity Propagation

Video Surveillance which reduced to 16.667% and 50% with
the use of BERT and Affinity propagation.

We apply our framework on detecting two sets of transducers
(Temperature Sensor and Lock) and map them to respective de-
vice functionalities. We test our approach on aKTSM algorithm,
because aKTSM algorithm was showing high false positive rate
with key term set matching approach.

TABLE IV
CATEGORIZATION OF DEVICE EXTRACTION ACCURACY BASED ON

CONTEXTUAL EMBEDDING OF KEY TERMS

Device Specific Accuracy Vendor Specific Accuracy Average Accuracy
Nest Protect: 100%

Nest: 92.85%

All vendors: 76.31%

Nest Yale Lock: 100%
Nest Camera: 75%

Nest Thermostat: 100%
Arlo Pro 3 Floodlight: 83.33%

Arlo: 50%Arlo Ultra Cam: 60%
Arlo Video Doorbell: 0%

Samsung Smart Cam: 100% Samsung: 100%

We conduct our experiment on eight smart homes IoT de-
vices which lead to 8C2 i.e., 28 combinations, with a split ratio
among devices of 75% (six devices) for training purpose and
25% (two) for testing purpose. We apply our framework based
on BERT and Affinity Propagation to annotate the cluster that
is about sensing/adjusting temperature using a training device.
For each new testing device, we predict if any of the sentences

with the word ‘temperature’ mentioned falls into our annotated
cluster. If a sentence from the new device falls under our
annotated cluster, we can conclude with high confidence that
the device into consideration should have a temperature sensor.
While training our model on some combination of devices,
it yields no significant cluster (cluster that explains device
behavior) as output. Such combination have been excluded from
our result. We get a total of 19 combinations where we have
a specific cluster explaining device behavior. Table IV displays
the accuracy of our approach categorized into vendors. We only
have one Samsung device into consideration. However, we can
see Nest devices performing significantly well with 92.85% of
vendor accuracy whereas Arlo vendor only have 50% accuracy.
This difference in vendor accuracy stems from the clarity and
conciseness with which the documents and materials pertaining
to specific devices are provided by vendors. Nest provides more
thorough documents for their device which yields to higher
accuracy.

B. Verification Efficiency

Thanks to Alloy’s use of a highly efficient SAT solver, many
different instantiations of an abstract model can be iterated over
extremely rapidly. For example, running assertions to validate
the soundness of the general model (e.g., that any instance of
the model is acyclic) with an Alloy scope of 30, takes, on
average over five trials, slightly over one second to complete. It
is worth noting that these validations of the general model with
such a scope produce an enormous number of instantiations,
many of which would be far more complex than any that would
actually be found in a smart home environment. For context,
such an assertion at a scope of 30 creates 1.3 million Boolean
satisfiability clauses.

In practice, a real-world application of the Alloy policies
described in this work would only require validation of asser-
tions of more specific configurations. These configurations, as
described previously, are effectively bound to a scope of one,
where there is at most one of each type of signature in any
given instantiation. For example, the policy assertion shown in
Listing 5, which represents the security goals of a user as they
are represented by a configuration, can find a counterexample



in under 10 milliseconds, on average, and produces only 7,145
clauses in the resulting Boolean expression. Even in the case
of very loosely defined policies, where no specific locations
are assigned to devices, and therefore a great number of
instances are created, Alloy can iterate over these resulting
instances extremely quickly. Note that, even the most complex
configurations found in a smart home environment could be
analyzed in a reasonable amount of time.

In a smart home environment where the device configurations
do not change too often, the use of Alloy to monitor an IoT
environment in real-time is reasonable, and even more so for
proactive analysis. Alloy could be presented with the desired
configuration by a user ahead of its installation, or an automated
system could provide Alloy with the current configuration. In
either case, Alloy would be able to efficiently notify the user
of any potential violations to their security goals by validating
the configuration against the user-defined policy. With Alloy,
users can encapsulate their security goals in a policy that can
be asserted against the IoT environment periodically, and in
real-time as devices belonging to different functionality groups
are placed in different locations.

VII. CONCLUSION AND FUTURE WORK

We propose a context-based approach to detect transducer
and the respective functionalities of IoT devices using vendor
materials. We also show how the functionality of the devices
plays an important role in an example smart home application.
Specifically, we show policies where the placement of devices
is contingent on the sensitivity of the location and the function-
alities of the devices, and how such policies can be specified
using NIST NGAC and automatically analyzed to check for
conformance and consistencies using Alloy. Our future work
involves expanding our scope to include more IoT devices from
various vendors and also investigate the problem in the context
of industrial IoTs. We would also like to investigate more use
cases involving device functionalities, including its application
to security audits.
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